Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # ] | |
| # /// | |
| """ | |
| Run the BCO training script with the commands below. In general, the optimal configuration for BCO will be similar to that of KTO. | |
| # Full training: | |
| python examples/scripts/bco.py \ | |
| --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \ | |
| --trust_remote_code \ | |
| --dataset_name trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness \ | |
| --per_device_train_batch_size 16 \ | |
| --per_device_eval_batch_size 32 \ | |
| --num_train_epochs 1 \ | |
| --learning_rate 1e-6 \ | |
| --gradient_checkpointing \ | |
| --gradient_accumulation_steps 1 \ | |
| --eval_steps 0.2 \ | |
| --save_strategy no \ | |
| --output_dir=bco-aligned-model \ | |
| --logging_first_step \ | |
| --max_length 2048 \ | |
| --max_prompt_length 1536 \ | |
| --max_completion_length 1024 \ | |
| --no_remove_unused_columns \ | |
| --warmup_ratio 0.1 \ | |
| --bf16 \ | |
| --report_to wandb | |
| # QLoRA: | |
| python examples/scripts/bco.py \ | |
| --model_name_or_path=nnheui/stablelm-2-1_6b-sft-full \ | |
| --per_device_train_batch_size 16 \ | |
| --per_device_eval_batch_size 32 \ | |
| --num_train_epochs 1 \ | |
| --learning_rate 1e-6 \ | |
| --gradient_checkpointing \ | |
| --gradient_accumulation_steps 1 \ | |
| --eval_steps 0.2 \ | |
| --save_strategy no \ | |
| --output_dir=bco-aligned-model-lora \ | |
| --logging_first_step \ | |
| --warmup_ratio 0.1 \ | |
| --report_to wandb \ | |
| --max_length 2048 \ | |
| --max_prompt_length 1536 \ | |
| --max_completion_length 1024 \ | |
| --no_remove_unused_columns \ | |
| --warmup_ratio 0.1 \ | |
| --bf16 \ | |
| --use_peft \ | |
| --load_in_4bit \ | |
| --lora_target_modules=all-linear \ | |
| --lora_r=16 \ | |
| --lora_alpha=16 | |
| """ | |
| from functools import partial | |
| import torch | |
| import torch.nn.functional as F | |
| from accelerate import Accelerator | |
| from datasets import load_dataset | |
| from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, PreTrainedModel | |
| from trl import BCOConfig, BCOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format | |
| def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor, model: PreTrainedModel): | |
| """ | |
| Borrowed from https://huggingface.co/nomic-ai/nomic-embed-text-v1.5#transformers | |
| """ | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| with torch.no_grad(): | |
| model_output = model(input_ids=input_ids, attention_mask=attention_mask) | |
| embeddings = mean_pooling(model_output, attention_mask) | |
| matryoshka_dim = 512 | |
| # normalize embeddings | |
| embeddings = F.normalize(embeddings, p=2, dim=1) | |
| embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],)) | |
| embeddings = embeddings[:, :matryoshka_dim] | |
| return embeddings | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser((ScriptArguments, BCOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
| training_args.gradient_checkpointing_kwargs = {"use_reentrant": True} | |
| # Load a pretrained model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| ref_model = AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # If we are aligning a base model, we use ChatML as the default template | |
| if tokenizer.chat_template is None: | |
| model, tokenizer = setup_chat_format(model, tokenizer) | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| accelerator = Accelerator() | |
| embedding_model = AutoModel.from_pretrained( | |
| "nomic-ai/nomic-embed-text-v1.5", | |
| trust_remote_code=model_args.trust_remote_code, | |
| safe_serialization=True, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| ) | |
| embedding_model = accelerator.prepare_model(embedding_model) | |
| embedding_tokenizer = AutoTokenizer.from_pretrained( | |
| "bert-base-uncased", trust_remote_code=model_args.trust_remote_code | |
| ) | |
| embedding_func = partial( | |
| embed_prompt, | |
| model=embedding_model, | |
| ) | |
| # Initialize the BCO trainer | |
| trainer = BCOTrainer( | |
| model, | |
| ref_model, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| embedding_func=embedding_func, | |
| embedding_tokenizer=embedding_tokenizer, | |
| ) | |
| # Train and push the model to the Hub | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |