Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from datasets import load_dataset | |
| from huggingface_hub import ModelCard | |
| from transformers import HfArgumentParser | |
| class ScriptArguments: | |
| r""" | |
| Arguments for the script. | |
| Args: | |
| push_to_hub (`bool`, *optional*, defaults to `False`): | |
| Whether to push the dataset to the Hugging Face Hub. | |
| repo_id (`str`, *optional*, defaults to `"trl-lib/tldr"`): | |
| Hugging Face repository ID to push the dataset to. | |
| dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
| Number of workers to use for dataset processing. | |
| """ | |
| push_to_hub: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
| ) | |
| repo_id: str = field( | |
| default="trl-lib/tldr", | |
| metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
| ) | |
| dataset_num_proc: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Number of workers to use for dataset processing."}, | |
| ) | |
| def to_prompt_completion(example): | |
| tldr_format_str = "SUBREDDIT: r/{subreddit}\n\nTITLE: {title}\n\nPOST: {post}\n\nTL;DR:" | |
| prompt = tldr_format_str.format(subreddit=example["subreddit"], title=example["title"], post=example["post"]) | |
| completion = " " + example["summary"] # Add a space to separate the prompt from the completion | |
| return {"prompt": prompt, "completion": completion} | |
| model_card = ModelCard(""" | |
| --- | |
| tags: [trl] | |
| --- | |
| # TL;DR Dataset | |
| ## Summary | |
| The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for summarization tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training summarization models. | |
| ## Data Structure | |
| - **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) | |
| - **Type**: [Prompt-completion](https://huggingface.co/docs/trl/main/dataset_formats#prompt-completion) | |
| Columns: | |
| - `"prompt"`: The unabridged Reddit post. | |
| - `"completion"`: The concise "TL;DR" summary appended by the author. | |
| This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities. | |
| ## Generation script | |
| The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr.py). | |
| """) | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser(ScriptArguments) | |
| script_args = parser.parse_args_into_dataclasses()[0] | |
| # Filtered reddit TL;DR dataset from https://github.com/openai/summarize-from-feedback?tab=readme-ov-file#reddit-tldr-dataset | |
| data_files = { | |
| "train": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/train.jsonl", | |
| "validation": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/valid.jsonl", | |
| "test": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/test.jsonl", | |
| } | |
| dataset = load_dataset("json", data_files=data_files) | |
| dataset = dataset.map( | |
| to_prompt_completion, | |
| num_proc=script_args.dataset_num_proc, | |
| remove_columns=["id", "subreddit", "title", "post", "summary"], | |
| ) | |
| if script_args.push_to_hub: | |
| dataset.push_to_hub(script_args.repo_id) | |
| model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |