Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # ] | |
| # /// | |
| """ | |
| # Full training | |
| ``` | |
| python trl/scripts/sft.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B \ | |
| --dataset_name trl-lib/Capybara \ | |
| --learning_rate 2.0e-5 \ | |
| --num_train_epochs 1 \ | |
| --packing \ | |
| --per_device_train_batch_size 2 \ | |
| --gradient_accumulation_steps 8 \ | |
| --gradient_checkpointing \ | |
| --eos_token '<|im_end|>' \ | |
| --eval_strategy steps \ | |
| --eval_steps 100 \ | |
| --output_dir Qwen2-0.5B-SFT \ | |
| --push_to_hub | |
| ``` | |
| # LoRA | |
| ``` | |
| python trl/scripts/sft.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B \ | |
| --dataset_name trl-lib/Capybara \ | |
| --learning_rate 2.0e-4 \ | |
| --num_train_epochs 1 \ | |
| --packing \ | |
| --per_device_train_batch_size 2 \ | |
| --gradient_accumulation_steps 8 \ | |
| --gradient_checkpointing \ | |
| --eos_token '<|im_end|>' \ | |
| --eval_strategy steps \ | |
| --eval_steps 100 \ | |
| --use_peft \ | |
| --lora_r 32 \ | |
| --lora_alpha 16 \ | |
| --output_dir Qwen2-0.5B-SFT \ | |
| --push_to_hub | |
| ``` | |
| """ | |
| import argparse | |
| from datasets import load_dataset | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES | |
| from trl import ( | |
| ModelConfig, | |
| ScriptArguments, | |
| SFTConfig, | |
| SFTTrainer, | |
| TrlParser, | |
| clone_chat_template, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| def main(script_args, training_args, model_args): | |
| ################ | |
| # Model init kwargs & Tokenizer | |
| ################ | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| trust_remote_code=model_args.trust_remote_code, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=model_args.torch_dtype, | |
| use_cache=False if training_args.gradient_checkpointing else True, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| # Create model | |
| config = AutoConfig.from_pretrained(model_args.model_name_or_path) | |
| valid_image_text_architectures = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.values() | |
| if config.architectures and any(arch in valid_image_text_architectures for arch in config.architectures): | |
| from transformers import AutoModelForImageTextToText | |
| model_kwargs.pop("use_cache", None) # Image models do not support cache | |
| model = AutoModelForImageTextToText.from_pretrained(model_args.model_name_or_path, **model_kwargs) | |
| else: | |
| model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) | |
| # Create tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True | |
| ) | |
| # Set default chat template if needed | |
| if tokenizer.chat_template is None: | |
| # TODO: source should be passed as an argument | |
| model, tokenizer = clone_chat_template(model, tokenizer, "Qwen/Qwen3-0.6B") | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| ################ | |
| # Training | |
| ################ | |
| trainer = SFTTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
| def make_parser(subparsers: argparse._SubParsersAction = None): | |
| dataclass_types = (ScriptArguments, SFTConfig, ModelConfig) | |
| if subparsers is not None: | |
| parser = subparsers.add_parser("sft", help="Run the SFT training script", dataclass_types=dataclass_types) | |
| else: | |
| parser = TrlParser(dataclass_types) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = make_parser() | |
| # When using the trl cli, this script may be run with additional arguments, corresponding accelerate arguments. | |
| # To ensure that their parsing does not interfere with the script arguments, parse the arguments with | |
| # `return_remaining_strings=True`, then ignore the remaining strings. | |
| script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True) | |
| main(script_args, training_args, model_args) | |