Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import tempfile | |
| import unittest | |
| import torch | |
| import torch.nn as nn | |
| from datasets import Dataset | |
| from transformers import Trainer, TrainingArguments | |
| from trl.trainer.callbacks import RichProgressCallback | |
| from .testing_utils import require_rich | |
| class DummyModel(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.a = nn.Parameter(torch.tensor(1.0)) | |
| def forward(self, x): | |
| return self.a * x | |
| class TestRichProgressCallback(unittest.TestCase): | |
| def setUp(self): | |
| self.dummy_model = DummyModel() | |
| self.dummy_train_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 5) | |
| self.dummy_val_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 101) | |
| def test_rich_progress_callback_logging(self): | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| training_args = TrainingArguments( | |
| output_dir=tmp_dir, | |
| per_device_eval_batch_size=2, | |
| per_device_train_batch_size=2, | |
| num_train_epochs=4, | |
| eval_strategy="steps", | |
| eval_steps=1, | |
| logging_strategy="steps", | |
| logging_steps=1, | |
| save_strategy="no", | |
| report_to="none", | |
| disable_tqdm=True, | |
| ) | |
| callbacks = [RichProgressCallback()] | |
| trainer = Trainer( | |
| model=self.dummy_model, | |
| train_dataset=self.dummy_train_dataset, | |
| eval_dataset=self.dummy_val_dataset, | |
| args=training_args, | |
| callbacks=callbacks, | |
| ) | |
| trainer.train() | |
| trainer.train() | |