Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "Pillow>=9.4.0", | |
| # ] | |
| # /// | |
| """ | |
| pip install pillow | |
| # Tested on 8x H100 GPUs | |
| accelerate launch | |
| --config_file=examples/accelerate_configs/deepspeed_zero3.yaml \ | |
| sft_vlm_smol_vlm.py \ | |
| --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ | |
| --model_name_or_path HuggingFaceTB/SmolVLM-Instruct \ | |
| --per_device_train_batch_size 1 \ | |
| --gradient_accumulation_steps 1 \ | |
| --output_dir sft-smol-vlm-hf \ | |
| --bf16 \ | |
| --torch_dtype bfloat16 \ | |
| --gradient_checkpointing \ | |
| --use_peft \ | |
| --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj | |
| For LLaVA-NeXT, use: (requires transformers>=4.45) | |
| --model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf | |
| For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) | |
| --model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct | |
| """ | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoModelForVision2Seq, | |
| AutoProcessor, | |
| Idefics3ForConditionalGeneration, | |
| LlavaForConditionalGeneration, | |
| ) | |
| from trl import ( | |
| ModelConfig, | |
| ScriptArguments, | |
| SFTConfig, | |
| SFTTrainer, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | |
| training_args.remove_unused_columns = False | |
| training_args.dataset_kwargs = {"skip_prepare_dataset": True} | |
| ################ | |
| # Model, Tokenizer & Processor | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| processor = AutoProcessor.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| model = AutoModelForVision2Seq.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
| ) | |
| ################ | |
| # Create a data collator to encode text and image pairs | |
| ################ | |
| def collate_fn(examples): | |
| # Get the texts and images, and apply the chat template | |
| texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] | |
| images = [example["images"] for example in examples] | |
| if isinstance(model, LlavaForConditionalGeneration): | |
| # LLava1.5 does not support multiple images | |
| images = [image[0] for image in images] | |
| # Tokenize the texts and process the images | |
| batch = processor(images=images, text=texts, return_tensors="pt", padding=True) | |
| # The labels are the input_ids, and we mask the padding tokens in the loss computation | |
| labels = batch["input_ids"].clone() | |
| labels[labels == processor.tokenizer.pad_token_id] = -100 # | |
| # Ignore the image token index in the loss computation (model specific) | |
| if isinstance(model, Idefics3ForConditionalGeneration): | |
| image_token_id = processor.tokenizer.additional_special_tokens_ids[ | |
| processor.tokenizer.additional_special_tokens.index("<image>") | |
| ] | |
| else: | |
| image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token) | |
| labels[labels == image_token_id] = -100 | |
| batch["labels"] = labels | |
| return batch | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| ################ | |
| # Training | |
| ################ | |
| trainer = SFTTrainer( | |
| model=model, | |
| args=training_args, | |
| data_collator=collate_fn, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=processor, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
| if trainer.accelerator.is_main_process: | |
| processor.push_to_hub(training_args.hub_model_id) | |