Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # ] | |
| # /// | |
| """ | |
| python examples/scripts/mpo_vlm.py \ | |
| --dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
| --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
| --per_device_train_batch_size 4 \ | |
| --per_device_eval_batch_size 4 \ | |
| --num_train_epochs 1 \ | |
| --gradient_accumulation_steps 8 \ | |
| --dataset_num_proc 1 \ | |
| --output_dir dpo_idefics_rlaif-v \ | |
| --torch_dtype bfloat16 \ | |
| --gradient_checkpointing \ | |
| --use_peft \ | |
| --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj \ | |
| --loss_type sigmoid bco_pair sft \ | |
| --loss_weights 0.8 0.2 1.0 \ | |
| --bf16 True | |
| """ | |
| import torch | |
| from datasets import load_dataset | |
| from PIL import Image | |
| from transformers import AutoModelForVision2Seq, AutoProcessor | |
| from trl import ( | |
| DPOConfig, | |
| DPOTrainer, | |
| ModelConfig, | |
| ScriptArguments, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| ################ | |
| # Model & Processor | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| trust_remote_code=model_args.trust_remote_code, | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| model = AutoModelForVision2Seq.from_pretrained( | |
| model_args.model_name_or_path, | |
| **model_kwargs, | |
| ) | |
| peft_config = get_peft_config(model_args) | |
| if peft_config is None: | |
| ref_model = AutoModelForVision2Seq.from_pretrained( | |
| model_args.model_name_or_path, | |
| **model_kwargs, | |
| ) | |
| else: | |
| ref_model = None | |
| processor = AutoProcessor.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset( | |
| script_args.dataset_name, | |
| name=script_args.dataset_config, | |
| streaming=script_args.dataset_streaming, | |
| ) | |
| train_dataset = dataset[script_args.dataset_train_split] | |
| test_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None | |
| def ensure_rgb(example): | |
| # Convert the image to RGB if it's not already | |
| image = example["images"][0] | |
| if isinstance(image, Image.Image): | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| example["images"] = [image] | |
| return example | |
| # Apply the transformation to the dataset (change num_proc depending on the available compute) | |
| train_dataset = train_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc) | |
| if test_dataset is not None: | |
| test_dataset = test_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc) | |
| ################ | |
| # Training | |
| ################ | |
| trainer = DPOTrainer( | |
| model=model, | |
| ref_model=ref_model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=test_dataset, | |
| processing_class=processor, | |
| peft_config=peft_config, | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |