Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,9 @@ import gradio as gr
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
-
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
| 7 |
import spaces
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import requests
|
| 10 |
import transformers
|
|
@@ -63,8 +64,10 @@ tokenizer_3 = AutoTokenizer.from_pretrained(
|
|
| 63 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 64 |
if torch.cuda.is_available():
|
| 65 |
pipe = StableDiffusion3Pipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
|
|
|
|
| 66 |
|
| 67 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 68 |
|
| 69 |
# Function
|
| 70 |
@spaces.GPU()
|
|
@@ -86,23 +89,34 @@ def generate_image(
|
|
| 86 |
|
| 87 |
|
| 88 |
if prompt['files']:
|
| 89 |
-
images = Image.open(prompt['files'][-1]).convert('RGB')
|
|
|
|
| 90 |
else:
|
| 91 |
-
|
| 92 |
generator = torch.Generator().manual_seed(seed)
|
| 93 |
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return image.images[0]
|
| 107 |
|
| 108 |
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
+
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Img2ImgPipeline
|
| 7 |
import spaces
|
| 8 |
+
from diffusers.utils import load_image
|
| 9 |
from PIL import Image
|
| 10 |
import requests
|
| 11 |
import transformers
|
|
|
|
| 64 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 65 |
if torch.cuda.is_available():
|
| 66 |
pipe = StableDiffusion3Pipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
|
| 67 |
+
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
|
| 68 |
|
| 69 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 70 |
+
pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 71 |
|
| 72 |
# Function
|
| 73 |
@spaces.GPU()
|
|
|
|
| 89 |
|
| 90 |
|
| 91 |
if prompt['files']:
|
| 92 |
+
#images = Image.open(prompt['files'][-1]).convert('RGB')
|
| 93 |
+
init_image = load_image(prompt['files'][-1]).resize((512, 512))
|
| 94 |
else:
|
| 95 |
+
init_image = None
|
| 96 |
generator = torch.Generator().manual_seed(seed)
|
| 97 |
|
| 98 |
|
| 99 |
+
if init_image:
|
| 100 |
+
image = pipe2(
|
| 101 |
+
text,
|
| 102 |
+
image=init_image,
|
| 103 |
+
negative_prompt=negative,
|
| 104 |
+
width=width,
|
| 105 |
+
height=height,
|
| 106 |
+
guidance_scale=scale,
|
| 107 |
+
num_inference_steps=steps,
|
| 108 |
+
generator = generator,
|
| 109 |
+
)
|
| 110 |
+
else:
|
| 111 |
+
image = pipe(
|
| 112 |
+
text,
|
| 113 |
+
negative_prompt=negative,
|
| 114 |
+
width=width,
|
| 115 |
+
height=height,
|
| 116 |
+
guidance_scale=scale,
|
| 117 |
+
num_inference_steps=steps,
|
| 118 |
+
generator = generator,
|
| 119 |
+
)
|
| 120 |
return image.images[0]
|
| 121 |
|
| 122 |
|