Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -70,35 +70,16 @@ tokenizer_3 = AutoTokenizer.from_pretrained(
|
|
| 70 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 71 |
if torch.cuda.is_available():
|
| 72 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 73 |
-
repo,
|
|
|
|
|
|
|
| 74 |
torch_dtype=torch.float16).to("cuda")
|
| 75 |
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
|
| 76 |
-
repo,
|
|
|
|
|
|
|
| 77 |
torch_dtype=torch.float16).to("cuda")
|
| 78 |
|
| 79 |
-
torch.set_float32_matmul_precision("high")
|
| 80 |
-
|
| 81 |
-
torch._inductor.config.conv_1x1_as_mm = True
|
| 82 |
-
torch._inductor.config.coordinate_descent_tuning = True
|
| 83 |
-
torch._inductor.config.epilogue_fusion = False
|
| 84 |
-
torch._inductor.config.coordinate_descent_check_all_directions = True
|
| 85 |
-
|
| 86 |
-
pipe.set_progress_bar_config(disable=True)
|
| 87 |
-
|
| 88 |
-
pipe.transformer.to(memory_format=torch.channels_last)
|
| 89 |
-
pipe.vae.to(memory_format=torch.channels_last)
|
| 90 |
-
|
| 91 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 92 |
-
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
pipe2.set_progress_bar_config(disable=True)
|
| 96 |
-
|
| 97 |
-
pipe2.transformer.to(memory_format=torch.channels_last)
|
| 98 |
-
pipe2.vae.to(memory_format=torch.channels_last)
|
| 99 |
-
|
| 100 |
-
pipe2.transformer = torch.compile(pipe2.transformer, mode="max-autotune", fullgraph=True)
|
| 101 |
-
pipe2.vae.decode = torch.compile(pipe2.vae.decode, mode="max-autotune", fullgraph=True)
|
| 102 |
|
| 103 |
|
| 104 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 70 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 71 |
if torch.cuda.is_available():
|
| 72 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 73 |
+
repo,
|
| 74 |
+
vae=vae,
|
| 75 |
+
transformer=transformer,
|
| 76 |
torch_dtype=torch.float16).to("cuda")
|
| 77 |
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
|
| 78 |
+
repo,
|
| 79 |
+
vae=vae,
|
| 80 |
+
transformer=transformer,
|
| 81 |
torch_dtype=torch.float16).to("cuda")
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|