Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny
|
| 2 |
+
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
| 3 |
+
from accelerate import Accelerator
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
import spaces
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import time
|
| 10 |
+
import PIL
|
| 11 |
+
|
| 12 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 13 |
+
repo_id = "tianweiy/DMD2"
|
| 14 |
+
subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000"
|
| 15 |
+
filename = "pytorch_model.bin"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class ModelWrapper:
|
| 19 |
+
def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator):
|
| 20 |
+
super().__init__()
|
| 21 |
+
torch.set_grad_enabled(False)
|
| 22 |
+
|
| 23 |
+
self.DTYPE = getattr(torch, precision)
|
| 24 |
+
self.device = accelerator.device
|
| 25 |
+
|
| 26 |
+
self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
|
| 27 |
+
self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
|
| 28 |
+
|
| 29 |
+
self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE)
|
| 30 |
+
|
| 31 |
+
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device)
|
| 32 |
+
self.vae_dtype = torch.float32
|
| 33 |
+
|
| 34 |
+
self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device)
|
| 35 |
+
self.tiny_vae_dtype = self.DTYPE
|
| 36 |
+
|
| 37 |
+
self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device)
|
| 38 |
+
|
| 39 |
+
self.accelerator = accelerator
|
| 40 |
+
self.image_resolution = image_resolution
|
| 41 |
+
self.latent_resolution = latent_resolution
|
| 42 |
+
self.num_train_timesteps = num_train_timesteps
|
| 43 |
+
self.vae_downsample_ratio = image_resolution // latent_resolution
|
| 44 |
+
self.conditioning_timestep = conditioning_timestep
|
| 45 |
+
|
| 46 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 47 |
+
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
| 48 |
+
self.num_step = num_step
|
| 49 |
+
|
| 50 |
+
def create_generator(self, model_id, checkpoint_path):
|
| 51 |
+
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
|
| 52 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 53 |
+
generator.load_state_dict(state_dict, strict=True)
|
| 54 |
+
generator.requires_grad_(False)
|
| 55 |
+
return generator
|
| 56 |
+
|
| 57 |
+
def build_condition_input(self, height, width):
|
| 58 |
+
original_size = (height, width)
|
| 59 |
+
target_size = (height, width)
|
| 60 |
+
crop_top_left = (0, 0)
|
| 61 |
+
|
| 62 |
+
add_time_ids = list(original_size + crop_top_left + target_size)
|
| 63 |
+
add_time_ids = torch.tensor([add_time_ids], device=self.device, dtype=self.DTYPE)
|
| 64 |
+
return add_time_ids
|
| 65 |
+
|
| 66 |
+
def _encode_prompt(self, prompt):
|
| 67 |
+
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
|
| 68 |
+
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
|
| 69 |
+
|
| 70 |
+
prompt_dict = {
|
| 71 |
+
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
|
| 72 |
+
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
|
| 73 |
+
}
|
| 74 |
+
return prompt_dict
|
| 75 |
+
|
| 76 |
+
@staticmethod
|
| 77 |
+
def _get_time():
|
| 78 |
+
torch.cuda.synchronize()
|
| 79 |
+
return time.time()
|
| 80 |
+
|
| 81 |
+
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
| 82 |
+
alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
| 83 |
+
|
| 84 |
+
if self.num_step == 1:
|
| 85 |
+
all_timesteps = [self.conditioning_timestep]
|
| 86 |
+
step_interval = 0
|
| 87 |
+
elif self.num_step == 4:
|
| 88 |
+
all_timesteps = [999, 749, 499, 249]
|
| 89 |
+
step_interval = 250
|
| 90 |
+
else:
|
| 91 |
+
raise NotImplementedError()
|
| 92 |
+
|
| 93 |
+
DTYPE = prompt_embed.dtype
|
| 94 |
+
|
| 95 |
+
for constant in all_timesteps:
|
| 96 |
+
current_timesteps = torch.ones(len(prompt_embed), device=self.device, dtype=torch.long) * constant
|
| 97 |
+
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
| 98 |
+
|
| 99 |
+
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
| 100 |
+
|
| 101 |
+
next_timestep = current_timesteps - step_interval
|
| 102 |
+
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
|
| 103 |
+
|
| 104 |
+
if fast_vae_decode:
|
| 105 |
+
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
| 106 |
+
else:
|
| 107 |
+
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 108 |
+
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
|
| 109 |
+
return eval_images
|
| 110 |
+
|
| 111 |
+
@spaces.GPU(enable_queue=True)
|
| 112 |
+
@torch.no_grad()
|
| 113 |
+
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
|
| 114 |
+
print("Running model inference...")
|
| 115 |
+
|
| 116 |
+
if seed == -1:
|
| 117 |
+
seed = np.random.randint(0, 1000000)
|
| 118 |
+
|
| 119 |
+
generator = torch.manual_seed(seed)
|
| 120 |
+
|
| 121 |
+
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
| 122 |
+
|
| 123 |
+
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device=self.device, dtype=self.DTYPE)
|
| 124 |
+
|
| 125 |
+
prompt_inputs = self._encode_prompt(prompt)
|
| 126 |
+
|
| 127 |
+
start_time = self._get_time()
|
| 128 |
+
|
| 129 |
+
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
| 130 |
+
|
| 131 |
+
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
| 132 |
+
prompt_embeds.repeat(num_images, 1, 1),
|
| 133 |
+
pooled_prompt_embeds.repeat(num_images, 1, 1)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
unet_added_conditions = {
|
| 137 |
+
"time_ids": add_time_ids,
|
| 138 |
+
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
|
| 142 |
+
|
| 143 |
+
end_time = self._get_time()
|
| 144 |
+
|
| 145 |
+
output_image_list = []
|
| 146 |
+
for image in eval_images:
|
| 147 |
+
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
|
| 148 |
+
|
| 149 |
+
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
| 150 |
+
|
| 151 |
+
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
| 152 |
+
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
| 153 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 154 |
+
|
| 155 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
| 156 |
+
return pred_original_sample
|
| 157 |
+
|
| 158 |
+
class SDXLTextEncoder(torch.nn.Module):
|
| 159 |
+
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
|
| 160 |
+
super().__init__()
|
| 161 |
+
|
| 162 |
+
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(accelerator.device).to(dtype=dtype)
|
| 163 |
+
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(accelerator.device).to(dtype=dtype)
|
| 164 |
+
|
| 165 |
+
self.accelerator = accelerator
|
| 166 |
+
|
| 167 |
+
def forward(self, batch):
|
| 168 |
+
text_input_ids_one = batch['text_input_ids_one'].to(self.accelerator.device).squeeze(1)
|
| 169 |
+
text_input_ids_two = batch['text_input_ids_two'].to(self.accelerator.device).squeeze(1)
|
| 170 |
+
prompt_embeds_list = []
|
| 171 |
+
|
| 172 |
+
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]):
|
| 173 |
+
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
|
| 174 |
+
|
| 175 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 176 |
+
|
| 177 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 178 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 179 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 180 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 181 |
+
|
| 182 |
+
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
| 183 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
|
| 184 |
+
|
| 185 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 186 |
+
|
| 187 |
+
def create_demo():
|
| 188 |
+
TITLE = "# DMD2-SDXL Demo"
|
| 189 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 190 |
+
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
|
| 191 |
+
precision = "float16"
|
| 192 |
+
image_resolution = 1024
|
| 193 |
+
latent_resolution = 128
|
| 194 |
+
num_train_timesteps = 1000
|
| 195 |
+
conditioning_timestep = 999
|
| 196 |
+
num_step = 4
|
| 197 |
+
revision = None
|
| 198 |
+
|
| 199 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 200 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 201 |
+
|
| 202 |
+
accelerator = Accelerator()
|
| 203 |
+
|
| 204 |
+
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
|
| 205 |
+
|
| 206 |
+
with gr.Blocks() as demo:
|
| 207 |
+
gr.Markdown(TITLE)
|
| 208 |
+
with gr.Row():
|
| 209 |
+
with gr.Column():
|
| 210 |
+
prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt")
|
| 211 |
+
run_button = gr.Button("Run")
|
| 212 |
+
with gr.Accordion(label="Advanced options", open=True):
|
| 213 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0)
|
| 214 |
+
num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=16)
|
| 215 |
+
fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True)
|
| 216 |
+
height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=1024)
|
| 217 |
+
width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=1024)
|
| 218 |
+
with gr.Column():
|
| 219 |
+
result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024)
|
| 220 |
+
error_message = gr.Text(label="Job Status")
|
| 221 |
+
|
| 222 |
+
inputs = [prompt, seed, height, width, num_images, fast_vae_decode]
|
| 223 |
+
run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1)
|
| 224 |
+
return demo
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
demo = create_demo()
|
| 228 |
+
demo.queue(api_open=False)
|
| 229 |
+
demo.launch(show_error=True, share=True)
|