Spaces:
Runtime error
Runtime error
| """ Selective Kernel Networks (ResNet base) | |
| Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586) | |
| This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268) | |
| and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer | |
| to the original paper with some modifications of my own to better balance param count vs accuracy. | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import math | |
| from torch import nn as nn | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .helpers import build_model_with_cfg | |
| from .layers import SelectiveKernel, ConvBnAct, create_attn | |
| from .registry import register_model | |
| from .resnet import ResNet | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, | |
| 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
| 'crop_pct': 0.875, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'conv1', 'classifier': 'fc', | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| 'skresnet18': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'), | |
| 'skresnet34': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth'), | |
| 'skresnet50': _cfg(), | |
| 'skresnet50d': _cfg( | |
| first_conv='conv1.0'), | |
| 'skresnext50_32x4d': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'), | |
| } | |
| class SelectiveKernelBasic(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, | |
| sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, | |
| norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): | |
| super(SelectiveKernelBasic, self).__init__() | |
| sk_kwargs = sk_kwargs or {} | |
| conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer) | |
| assert cardinality == 1, 'BasicBlock only supports cardinality of 1' | |
| assert base_width == 64, 'BasicBlock doest not support changing base width' | |
| first_planes = planes // reduce_first | |
| outplanes = planes * self.expansion | |
| first_dilation = first_dilation or dilation | |
| self.conv1 = SelectiveKernel( | |
| inplanes, first_planes, stride=stride, dilation=first_dilation, **conv_kwargs, **sk_kwargs) | |
| conv_kwargs['act_layer'] = None | |
| self.conv2 = ConvBnAct( | |
| first_planes, outplanes, kernel_size=3, dilation=dilation, **conv_kwargs) | |
| self.se = create_attn(attn_layer, outplanes) | |
| self.act = act_layer(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.drop_block = drop_block | |
| self.drop_path = drop_path | |
| def zero_init_last_bn(self): | |
| nn.init.zeros_(self.conv2.bn.weight) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.conv1(x) | |
| x = self.conv2(x) | |
| if self.se is not None: | |
| x = self.se(x) | |
| if self.drop_path is not None: | |
| x = self.drop_path(x) | |
| if self.downsample is not None: | |
| shortcut = self.downsample(shortcut) | |
| x += shortcut | |
| x = self.act(x) | |
| return x | |
| class SelectiveKernelBottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, | |
| cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, | |
| act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, | |
| drop_block=None, drop_path=None): | |
| super(SelectiveKernelBottleneck, self).__init__() | |
| sk_kwargs = sk_kwargs or {} | |
| conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer) | |
| width = int(math.floor(planes * (base_width / 64)) * cardinality) | |
| first_planes = width // reduce_first | |
| outplanes = planes * self.expansion | |
| first_dilation = first_dilation or dilation | |
| self.conv1 = ConvBnAct(inplanes, first_planes, kernel_size=1, **conv_kwargs) | |
| self.conv2 = SelectiveKernel( | |
| first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, | |
| **conv_kwargs, **sk_kwargs) | |
| conv_kwargs['act_layer'] = None | |
| self.conv3 = ConvBnAct(width, outplanes, kernel_size=1, **conv_kwargs) | |
| self.se = create_attn(attn_layer, outplanes) | |
| self.act = act_layer(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.drop_block = drop_block | |
| self.drop_path = drop_path | |
| def zero_init_last_bn(self): | |
| nn.init.zeros_(self.conv3.bn.weight) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.conv1(x) | |
| x = self.conv2(x) | |
| x = self.conv3(x) | |
| if self.se is not None: | |
| x = self.se(x) | |
| if self.drop_path is not None: | |
| x = self.drop_path(x) | |
| if self.downsample is not None: | |
| shortcut = self.downsample(shortcut) | |
| x += shortcut | |
| x = self.act(x) | |
| return x | |
| def _create_skresnet(variant, pretrained=False, **kwargs): | |
| return build_model_with_cfg( | |
| ResNet, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| **kwargs) | |
| def skresnet18(pretrained=False, **kwargs): | |
| """Constructs a Selective Kernel ResNet-18 model. | |
| Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this | |
| variation splits the input channels to the selective convolutions to keep param count down. | |
| """ | |
| sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) | |
| model_args = dict( | |
| block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs), | |
| zero_init_last_bn=False, **kwargs) | |
| return _create_skresnet('skresnet18', pretrained, **model_args) | |
| def skresnet34(pretrained=False, **kwargs): | |
| """Constructs a Selective Kernel ResNet-34 model. | |
| Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this | |
| variation splits the input channels to the selective convolutions to keep param count down. | |
| """ | |
| sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) | |
| model_args = dict( | |
| block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), | |
| zero_init_last_bn=False, **kwargs) | |
| return _create_skresnet('skresnet34', pretrained, **model_args) | |
| def skresnet50(pretrained=False, **kwargs): | |
| """Constructs a Select Kernel ResNet-50 model. | |
| Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this | |
| variation splits the input channels to the selective convolutions to keep param count down. | |
| """ | |
| sk_kwargs = dict(split_input=True) | |
| model_args = dict( | |
| block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), | |
| zero_init_last_bn=False, **kwargs) | |
| return _create_skresnet('skresnet50', pretrained, **model_args) | |
| def skresnet50d(pretrained=False, **kwargs): | |
| """Constructs a Select Kernel ResNet-50-D model. | |
| Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this | |
| variation splits the input channels to the selective convolutions to keep param count down. | |
| """ | |
| sk_kwargs = dict(split_input=True) | |
| model_args = dict( | |
| block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, | |
| block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) | |
| return _create_skresnet('skresnet50d', pretrained, **model_args) | |
| def skresnext50_32x4d(pretrained=False, **kwargs): | |
| """Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to | |
| the SKNet-50 model in the Select Kernel Paper | |
| """ | |
| sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False) | |
| model_args = dict( | |
| block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, | |
| block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) | |
| return _create_skresnet('skresnext50_32x4d', pretrained, **model_args) | |