Spaces:
Runtime error
Runtime error
| """ LeViT | |
| Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` | |
| - https://arxiv.org/abs/2104.01136 | |
| @article{graham2021levit, | |
| title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, | |
| author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, | |
| journal={arXiv preprint arXiv:22104.01136}, | |
| year={2021} | |
| } | |
| Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. | |
| This version combines both conv/linear models and fixes torchscript compatibility. | |
| Modifications by/coyright Copyright 2021 Ross Wightman | |
| """ | |
| # Copyright (c) 2015-present, Facebook, Inc. | |
| # All rights reserved. | |
| # Modified from | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # Copyright 2020 Ross Wightman, Apache-2.0 License | |
| import itertools | |
| from copy import deepcopy | |
| from functools import partial | |
| from typing import Dict | |
| import torch | |
| import torch.nn as nn | |
| from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN | |
| from .helpers import build_model_with_cfg, overlay_external_default_cfg | |
| from .layers import to_ntuple, get_act_layer | |
| from .vision_transformer import trunc_normal_ | |
| from .registry import register_model | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, | |
| 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
| 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'patch_embed.0.c', 'classifier': ('head.l', 'head_dist.l'), | |
| **kwargs | |
| } | |
| default_cfgs = dict( | |
| levit_128s=_cfg( | |
| url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth' | |
| ), | |
| levit_128=_cfg( | |
| url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth' | |
| ), | |
| levit_192=_cfg( | |
| url='https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth' | |
| ), | |
| levit_256=_cfg( | |
| url='https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth' | |
| ), | |
| levit_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth' | |
| ), | |
| ) | |
| model_cfgs = dict( | |
| levit_128s=dict( | |
| embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), | |
| levit_128=dict( | |
| embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), | |
| levit_192=dict( | |
| embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), | |
| levit_256=dict( | |
| embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), | |
| levit_384=dict( | |
| embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), | |
| ) | |
| __all__ = ['Levit'] | |
| def levit_128s(pretrained=False, use_conv=False, **kwargs): | |
| return create_levit( | |
| 'levit_128s', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
| def levit_128(pretrained=False, use_conv=False, **kwargs): | |
| return create_levit( | |
| 'levit_128', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
| def levit_192(pretrained=False, use_conv=False, **kwargs): | |
| return create_levit( | |
| 'levit_192', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
| def levit_256(pretrained=False, use_conv=False, **kwargs): | |
| return create_levit( | |
| 'levit_256', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
| def levit_384(pretrained=False, use_conv=False, **kwargs): | |
| return create_levit( | |
| 'levit_384', pretrained=pretrained, use_conv=use_conv, **kwargs) | |
| class ConvNorm(nn.Sequential): | |
| def __init__( | |
| self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000): | |
| super().__init__() | |
| self.add_module('c', nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False)) | |
| bn = nn.BatchNorm2d(b) | |
| nn.init.constant_(bn.weight, bn_weight_init) | |
| nn.init.constant_(bn.bias, 0) | |
| self.add_module('bn', bn) | |
| def fuse(self): | |
| c, bn = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = c.weight * w[:, None, None, None] | |
| b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| m = nn.Conv2d( | |
| w.size(1), w.size(0), w.shape[2:], stride=self.c.stride, | |
| padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| class LinearNorm(nn.Sequential): | |
| def __init__(self, a, b, bn_weight_init=1, resolution=-100000): | |
| super().__init__() | |
| self.add_module('c', nn.Linear(a, b, bias=False)) | |
| bn = nn.BatchNorm1d(b) | |
| nn.init.constant_(bn.weight, bn_weight_init) | |
| nn.init.constant_(bn.bias, 0) | |
| self.add_module('bn', bn) | |
| def fuse(self): | |
| l, bn = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = l.weight * w[:, None] | |
| b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| m = nn.Linear(w.size(1), w.size(0)) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| def forward(self, x): | |
| x = self.c(x) | |
| return self.bn(x.flatten(0, 1)).reshape_as(x) | |
| class NormLinear(nn.Sequential): | |
| def __init__(self, a, b, bias=True, std=0.02): | |
| super().__init__() | |
| self.add_module('bn', nn.BatchNorm1d(a)) | |
| l = nn.Linear(a, b, bias=bias) | |
| trunc_normal_(l.weight, std=std) | |
| if bias: | |
| nn.init.constant_(l.bias, 0) | |
| self.add_module('l', l) | |
| def fuse(self): | |
| bn, l = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = l.weight * w[None, :] | |
| if l.bias is None: | |
| b = b @ self.l.weight.T | |
| else: | |
| b = (l.weight @ b[:, None]).view(-1) + self.l.bias | |
| m = nn.Linear(w.size(1), w.size(0)) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| def stem_b16(in_chs, out_chs, activation, resolution=224): | |
| return nn.Sequential( | |
| ConvNorm(in_chs, out_chs // 8, 3, 2, 1, resolution=resolution), | |
| activation(), | |
| ConvNorm(out_chs // 8, out_chs // 4, 3, 2, 1, resolution=resolution // 2), | |
| activation(), | |
| ConvNorm(out_chs // 4, out_chs // 2, 3, 2, 1, resolution=resolution // 4), | |
| activation(), | |
| ConvNorm(out_chs // 2, out_chs, 3, 2, 1, resolution=resolution // 8)) | |
| class Residual(nn.Module): | |
| def __init__(self, m, drop): | |
| super().__init__() | |
| self.m = m | |
| self.drop = drop | |
| def forward(self, x): | |
| if self.training and self.drop > 0: | |
| return x + self.m(x) * torch.rand( | |
| x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() | |
| else: | |
| return x + self.m(x) | |
| class Subsample(nn.Module): | |
| def __init__(self, stride, resolution): | |
| super().__init__() | |
| self.stride = stride | |
| self.resolution = resolution | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| x = x.view(B, self.resolution, self.resolution, C)[:, ::self.stride, ::self.stride] | |
| return x.reshape(B, -1, C) | |
| class Attention(nn.Module): | |
| ab: Dict[str, torch.Tensor] | |
| def __init__( | |
| self, dim, key_dim, num_heads=8, attn_ratio=4, act_layer=None, resolution=14, use_conv=False): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| self.scale = key_dim ** -0.5 | |
| self.key_dim = key_dim | |
| self.nh_kd = nh_kd = key_dim * num_heads | |
| self.d = int(attn_ratio * key_dim) | |
| self.dh = int(attn_ratio * key_dim) * num_heads | |
| self.attn_ratio = attn_ratio | |
| self.use_conv = use_conv | |
| ln_layer = ConvNorm if self.use_conv else LinearNorm | |
| h = self.dh + nh_kd * 2 | |
| self.qkv = ln_layer(dim, h, resolution=resolution) | |
| self.proj = nn.Sequential( | |
| act_layer(), | |
| ln_layer(self.dh, dim, bn_weight_init=0, resolution=resolution)) | |
| points = list(itertools.product(range(resolution), range(resolution))) | |
| N = len(points) | |
| attention_offsets = {} | |
| idxs = [] | |
| for p1 in points: | |
| for p2 in points: | |
| offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) | |
| if offset not in attention_offsets: | |
| attention_offsets[offset] = len(attention_offsets) | |
| idxs.append(attention_offsets[offset]) | |
| self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) | |
| self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N)) | |
| self.ab = {} | |
| def train(self, mode=True): | |
| super().train(mode) | |
| if mode and self.ab: | |
| self.ab = {} # clear ab cache | |
| def get_attention_biases(self, device: torch.device) -> torch.Tensor: | |
| if self.training: | |
| return self.attention_biases[:, self.attention_bias_idxs] | |
| else: | |
| device_key = str(device) | |
| if device_key not in self.ab: | |
| self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] | |
| return self.ab[device_key] | |
| def forward(self, x): # x (B,C,H,W) | |
| if self.use_conv: | |
| B, C, H, W = x.shape | |
| q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.d], dim=2) | |
| attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) | |
| attn = attn.softmax(dim=-1) | |
| x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) | |
| else: | |
| B, N, C = x.shape | |
| qkv = self.qkv(x) | |
| q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3) | |
| q = q.permute(0, 2, 1, 3) | |
| k = k.permute(0, 2, 1, 3) | |
| v = v.permute(0, 2, 1, 3) | |
| attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) | |
| x = self.proj(x) | |
| return x | |
| class AttentionSubsample(nn.Module): | |
| ab: Dict[str, torch.Tensor] | |
| def __init__( | |
| self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2, | |
| act_layer=None, stride=2, resolution=14, resolution_=7, use_conv=False): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| self.scale = key_dim ** -0.5 | |
| self.key_dim = key_dim | |
| self.nh_kd = nh_kd = key_dim * num_heads | |
| self.d = int(attn_ratio * key_dim) | |
| self.dh = self.d * self.num_heads | |
| self.attn_ratio = attn_ratio | |
| self.resolution_ = resolution_ | |
| self.resolution_2 = resolution_ ** 2 | |
| self.use_conv = use_conv | |
| if self.use_conv: | |
| ln_layer = ConvNorm | |
| sub_layer = partial(nn.AvgPool2d, kernel_size=1, padding=0) | |
| else: | |
| ln_layer = LinearNorm | |
| sub_layer = partial(Subsample, resolution=resolution) | |
| h = self.dh + nh_kd | |
| self.kv = ln_layer(in_dim, h, resolution=resolution) | |
| self.q = nn.Sequential( | |
| sub_layer(stride=stride), | |
| ln_layer(in_dim, nh_kd, resolution=resolution_)) | |
| self.proj = nn.Sequential( | |
| act_layer(), | |
| ln_layer(self.dh, out_dim, resolution=resolution_)) | |
| self.stride = stride | |
| self.resolution = resolution | |
| points = list(itertools.product(range(resolution), range(resolution))) | |
| points_ = list(itertools.product(range(resolution_), range(resolution_))) | |
| N = len(points) | |
| N_ = len(points_) | |
| attention_offsets = {} | |
| idxs = [] | |
| for p1 in points_: | |
| for p2 in points: | |
| size = 1 | |
| offset = ( | |
| abs(p1[0] * stride - p2[0] + (size - 1) / 2), | |
| abs(p1[1] * stride - p2[1] + (size - 1) / 2)) | |
| if offset not in attention_offsets: | |
| attention_offsets[offset] = len(attention_offsets) | |
| idxs.append(attention_offsets[offset]) | |
| self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) | |
| self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N_, N)) | |
| self.ab = {} # per-device attention_biases cache | |
| def train(self, mode=True): | |
| super().train(mode) | |
| if mode and self.ab: | |
| self.ab = {} # clear ab cache | |
| def get_attention_biases(self, device: torch.device) -> torch.Tensor: | |
| if self.training: | |
| return self.attention_biases[:, self.attention_bias_idxs] | |
| else: | |
| device_key = str(device) | |
| if device_key not in self.ab: | |
| self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] | |
| return self.ab[device_key] | |
| def forward(self, x): | |
| if self.use_conv: | |
| B, C, H, W = x.shape | |
| k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.d], dim=2) | |
| q = self.q(x).view(B, self.num_heads, self.key_dim, self.resolution_2) | |
| attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) | |
| attn = attn.softmax(dim=-1) | |
| x = (v @ attn.transpose(-2, -1)).reshape(B, -1, self.resolution_, self.resolution_) | |
| else: | |
| B, N, C = x.shape | |
| k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.d], dim=3) | |
| k = k.permute(0, 2, 1, 3) # BHNC | |
| v = v.permute(0, 2, 1, 3) # BHNC | |
| q = self.q(x).view(B, self.resolution_2, self.num_heads, self.key_dim).permute(0, 2, 1, 3) | |
| attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).transpose(1, 2).reshape(B, -1, self.dh) | |
| x = self.proj(x) | |
| return x | |
| class Levit(nn.Module): | |
| """ Vision Transformer with support for patch or hybrid CNN input stage | |
| NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems | |
| w/ train scripts that don't take tuple outputs, | |
| """ | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| num_classes=1000, | |
| embed_dim=(192,), | |
| key_dim=64, | |
| depth=(12,), | |
| num_heads=(3,), | |
| attn_ratio=2, | |
| mlp_ratio=2, | |
| hybrid_backbone=None, | |
| down_ops=None, | |
| act_layer='hard_swish', | |
| attn_act_layer='hard_swish', | |
| distillation=True, | |
| use_conv=False, | |
| drop_rate=0., | |
| drop_path_rate=0.): | |
| super().__init__() | |
| act_layer = get_act_layer(act_layer) | |
| attn_act_layer = get_act_layer(attn_act_layer) | |
| if isinstance(img_size, tuple): | |
| # FIXME origin impl passes single img/res dim through whole hierarchy, | |
| # not sure this model will be used enough to spend time fixing it. | |
| assert img_size[0] == img_size[1] | |
| img_size = img_size[0] | |
| self.num_classes = num_classes | |
| self.num_features = embed_dim[-1] | |
| self.embed_dim = embed_dim | |
| N = len(embed_dim) | |
| assert len(depth) == len(num_heads) == N | |
| key_dim = to_ntuple(N)(key_dim) | |
| attn_ratio = to_ntuple(N)(attn_ratio) | |
| mlp_ratio = to_ntuple(N)(mlp_ratio) | |
| down_ops = down_ops or ( | |
| # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) | |
| ('Subsample', key_dim[0], embed_dim[0] // key_dim[0], 4, 2, 2), | |
| ('Subsample', key_dim[0], embed_dim[1] // key_dim[1], 4, 2, 2), | |
| ('',) | |
| ) | |
| self.distillation = distillation | |
| self.use_conv = use_conv | |
| ln_layer = ConvNorm if self.use_conv else LinearNorm | |
| self.patch_embed = hybrid_backbone or stem_b16(in_chans, embed_dim[0], activation=act_layer) | |
| self.blocks = [] | |
| resolution = img_size // patch_size | |
| for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate( | |
| zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)): | |
| for _ in range(dpth): | |
| self.blocks.append( | |
| Residual( | |
| Attention( | |
| ed, kd, nh, attn_ratio=ar, act_layer=attn_act_layer, | |
| resolution=resolution, use_conv=use_conv), | |
| drop_path_rate)) | |
| if mr > 0: | |
| h = int(ed * mr) | |
| self.blocks.append( | |
| Residual(nn.Sequential( | |
| ln_layer(ed, h, resolution=resolution), | |
| act_layer(), | |
| ln_layer(h, ed, bn_weight_init=0, resolution=resolution), | |
| ), drop_path_rate)) | |
| if do[0] == 'Subsample': | |
| # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) | |
| resolution_ = (resolution - 1) // do[5] + 1 | |
| self.blocks.append( | |
| AttentionSubsample( | |
| *embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2], | |
| attn_ratio=do[3], act_layer=attn_act_layer, stride=do[5], | |
| resolution=resolution, resolution_=resolution_, use_conv=use_conv)) | |
| resolution = resolution_ | |
| if do[4] > 0: # mlp_ratio | |
| h = int(embed_dim[i + 1] * do[4]) | |
| self.blocks.append( | |
| Residual(nn.Sequential( | |
| ln_layer(embed_dim[i + 1], h, resolution=resolution), | |
| act_layer(), | |
| ln_layer(h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution), | |
| ), drop_path_rate)) | |
| self.blocks = nn.Sequential(*self.blocks) | |
| # Classifier head | |
| self.head = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| self.head_dist = None | |
| if distillation: | |
| self.head_dist = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| def no_weight_decay(self): | |
| return {x for x in self.state_dict().keys() if 'attention_biases' in x} | |
| def get_classifier(self): | |
| if self.head_dist is None: | |
| return self.head | |
| else: | |
| return self.head, self.head_dist | |
| def reset_classifier(self, num_classes, global_pool='', distillation=None): | |
| self.num_classes = num_classes | |
| self.head = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| if distillation is not None: | |
| self.distillation = distillation | |
| if self.distillation: | |
| self.head_dist = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| else: | |
| self.head_dist = None | |
| def forward_features(self, x): | |
| x = self.patch_embed(x) | |
| if not self.use_conv: | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.blocks(x) | |
| x = x.mean((-2, -1)) if self.use_conv else x.mean(1) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| if self.head_dist is not None: | |
| x, x_dist = self.head(x), self.head_dist(x) | |
| if self.training and not torch.jit.is_scripting(): | |
| return x, x_dist | |
| else: | |
| # during inference, return the average of both classifier predictions | |
| return (x + x_dist) / 2 | |
| else: | |
| x = self.head(x) | |
| return x | |
| def checkpoint_filter_fn(state_dict, model): | |
| if 'model' in state_dict: | |
| # For deit models | |
| state_dict = state_dict['model'] | |
| D = model.state_dict() | |
| for k in state_dict.keys(): | |
| if k in D and D[k].ndim == 4 and state_dict[k].ndim == 2: | |
| state_dict[k] = state_dict[k][:, :, None, None] | |
| return state_dict | |
| def create_levit(variant, pretrained=False, default_cfg=None, fuse=False, **kwargs): | |
| if kwargs.get('features_only', None): | |
| raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
| model_cfg = dict(**model_cfgs[variant], **kwargs) | |
| model = build_model_with_cfg( | |
| Levit, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| pretrained_filter_fn=checkpoint_filter_fn, | |
| **model_cfg) | |
| #if fuse: | |
| # utils.replace_batchnorm(model) | |
| return model | |