Spaces:
Runtime error
Runtime error
| """EvoNormB0 (Batched) and EvoNormS0 (Sample) in PyTorch | |
| An attempt at getting decent performing EvoNorms running in PyTorch. | |
| While currently faster than other impl, still quite a ways off the built-in BN | |
| in terms of memory usage and throughput (roughly 5x mem, 1/2 - 1/3x speed). | |
| Still very much a WIP, fiddling with buffer usage, in-place/jit optimizations, and layouts. | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| class EvoNormBatch2d(nn.Module): | |
| def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, drop_block=None): | |
| super(EvoNormBatch2d, self).__init__() | |
| self.apply_act = apply_act # apply activation (non-linearity) | |
| self.momentum = momentum | |
| self.eps = eps | |
| param_shape = (1, num_features, 1, 1) | |
| self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True) | |
| self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True) | |
| if apply_act: | |
| self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True) | |
| self.register_buffer('running_var', torch.ones(1, num_features, 1, 1)) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| nn.init.ones_(self.weight) | |
| nn.init.zeros_(self.bias) | |
| if self.apply_act: | |
| nn.init.ones_(self.v) | |
| def forward(self, x): | |
| assert x.dim() == 4, 'expected 4D input' | |
| x_type = x.dtype | |
| if self.training: | |
| var = x.var(dim=(0, 2, 3), unbiased=False, keepdim=True) | |
| n = x.numel() / x.shape[1] | |
| self.running_var.copy_( | |
| var.detach() * self.momentum * (n / (n - 1)) + self.running_var * (1 - self.momentum)) | |
| else: | |
| var = self.running_var | |
| if self.apply_act: | |
| v = self.v.to(dtype=x_type) | |
| d = x * v + (x.var(dim=(2, 3), unbiased=False, keepdim=True) + self.eps).sqrt().to(dtype=x_type) | |
| d = d.max((var + self.eps).sqrt().to(dtype=x_type)) | |
| x = x / d | |
| return x * self.weight + self.bias | |
| class EvoNormSample2d(nn.Module): | |
| def __init__(self, num_features, apply_act=True, groups=8, eps=1e-5, drop_block=None): | |
| super(EvoNormSample2d, self).__init__() | |
| self.apply_act = apply_act # apply activation (non-linearity) | |
| self.groups = groups | |
| self.eps = eps | |
| param_shape = (1, num_features, 1, 1) | |
| self.weight = nn.Parameter(torch.ones(param_shape), requires_grad=True) | |
| self.bias = nn.Parameter(torch.zeros(param_shape), requires_grad=True) | |
| if apply_act: | |
| self.v = nn.Parameter(torch.ones(param_shape), requires_grad=True) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| nn.init.ones_(self.weight) | |
| nn.init.zeros_(self.bias) | |
| if self.apply_act: | |
| nn.init.ones_(self.v) | |
| def forward(self, x): | |
| assert x.dim() == 4, 'expected 4D input' | |
| B, C, H, W = x.shape | |
| assert C % self.groups == 0 | |
| if self.apply_act: | |
| n = x * (x * self.v).sigmoid() | |
| x = x.reshape(B, self.groups, -1) | |
| x = n.reshape(B, self.groups, -1) / (x.var(dim=-1, unbiased=False, keepdim=True) + self.eps).sqrt() | |
| x = x.reshape(B, C, H, W) | |
| return x * self.weight + self.bias | |