Spaces:
Runtime error
Runtime error
| """ NormAct (Normalizaiton + Activation Layer) Factory | |
| Create norm + act combo modules that attempt to be backwards compatible with separate norm + act | |
| isntances in models. Where these are used it will be possible to swap separate BN + act layers with | |
| combined modules like IABN or EvoNorms. | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import types | |
| import functools | |
| import torch | |
| import torch.nn as nn | |
| from .evo_norm import EvoNormBatch2d, EvoNormSample2d | |
| from .norm_act import BatchNormAct2d, GroupNormAct | |
| from .inplace_abn import InplaceAbn | |
| _NORM_ACT_TYPES = {BatchNormAct2d, GroupNormAct, EvoNormBatch2d, EvoNormSample2d, InplaceAbn} | |
| _NORM_ACT_REQUIRES_ARG = {BatchNormAct2d, GroupNormAct, InplaceAbn} # requires act_layer arg to define act type | |
| def get_norm_act_layer(layer_class): | |
| layer_class = layer_class.replace('_', '').lower() | |
| if layer_class.startswith("batchnorm"): | |
| layer = BatchNormAct2d | |
| elif layer_class.startswith("groupnorm"): | |
| layer = GroupNormAct | |
| elif layer_class == "evonormbatch": | |
| layer = EvoNormBatch2d | |
| elif layer_class == "evonormsample": | |
| layer = EvoNormSample2d | |
| elif layer_class == "iabn" or layer_class == "inplaceabn": | |
| layer = InplaceAbn | |
| else: | |
| assert False, "Invalid norm_act layer (%s)" % layer_class | |
| return layer | |
| def create_norm_act(layer_type, num_features, apply_act=True, jit=False, **kwargs): | |
| layer_parts = layer_type.split('-') # e.g. batchnorm-leaky_relu | |
| assert len(layer_parts) in (1, 2) | |
| layer = get_norm_act_layer(layer_parts[0]) | |
| #activation_class = layer_parts[1].lower() if len(layer_parts) > 1 else '' # FIXME support string act selection? | |
| layer_instance = layer(num_features, apply_act=apply_act, **kwargs) | |
| if jit: | |
| layer_instance = torch.jit.script(layer_instance) | |
| return layer_instance | |
| def convert_norm_act(norm_layer, act_layer): | |
| assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) | |
| assert act_layer is None or isinstance(act_layer, (type, str, types.FunctionType, functools.partial)) | |
| norm_act_kwargs = {} | |
| # unbind partial fn, so args can be rebound later | |
| if isinstance(norm_layer, functools.partial): | |
| norm_act_kwargs.update(norm_layer.keywords) | |
| norm_layer = norm_layer.func | |
| if isinstance(norm_layer, str): | |
| norm_act_layer = get_norm_act_layer(norm_layer) | |
| elif norm_layer in _NORM_ACT_TYPES: | |
| norm_act_layer = norm_layer | |
| elif isinstance(norm_layer, types.FunctionType): | |
| # if function type, must be a lambda/fn that creates a norm_act layer | |
| norm_act_layer = norm_layer | |
| else: | |
| type_name = norm_layer.__name__.lower() | |
| if type_name.startswith('batchnorm'): | |
| norm_act_layer = BatchNormAct2d | |
| elif type_name.startswith('groupnorm'): | |
| norm_act_layer = GroupNormAct | |
| else: | |
| assert False, f"No equivalent norm_act layer for {type_name}" | |
| if norm_act_layer in _NORM_ACT_REQUIRES_ARG: | |
| # pass `act_layer` through for backwards compat where `act_layer=None` implies no activation. | |
| # In the future, may force use of `apply_act` with `act_layer` arg bound to relevant NormAct types | |
| norm_act_kwargs.setdefault('act_layer', act_layer) | |
| if norm_act_kwargs: | |
| norm_act_layer = functools.partial(norm_act_layer, **norm_act_kwargs) # bind/rebind args | |
| return norm_act_layer | |