Spaces:
Runtime error
Runtime error
| """ Activations | |
| A collection of activations fn and modules with a common interface so that they can | |
| easily be swapped. All have an `inplace` arg even if not used. | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import torch | |
| from torch import nn as nn | |
| from torch.nn import functional as F | |
| def swish(x, inplace: bool = False): | |
| """Swish - Described in: https://arxiv.org/abs/1710.05941 | |
| """ | |
| return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) | |
| class Swish(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(Swish, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return swish(x, self.inplace) | |
| def mish(x, inplace: bool = False): | |
| """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 | |
| NOTE: I don't have a working inplace variant | |
| """ | |
| return x.mul(F.softplus(x).tanh()) | |
| class Mish(nn.Module): | |
| """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 | |
| """ | |
| def __init__(self, inplace: bool = False): | |
| super(Mish, self).__init__() | |
| def forward(self, x): | |
| return mish(x) | |
| def sigmoid(x, inplace: bool = False): | |
| return x.sigmoid_() if inplace else x.sigmoid() | |
| # PyTorch has this, but not with a consistent inplace argmument interface | |
| class Sigmoid(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(Sigmoid, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return x.sigmoid_() if self.inplace else x.sigmoid() | |
| def tanh(x, inplace: bool = False): | |
| return x.tanh_() if inplace else x.tanh() | |
| # PyTorch has this, but not with a consistent inplace argmument interface | |
| class Tanh(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(Tanh, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return x.tanh_() if self.inplace else x.tanh() | |
| def hard_swish(x, inplace: bool = False): | |
| inner = F.relu6(x + 3.).div_(6.) | |
| return x.mul_(inner) if inplace else x.mul(inner) | |
| class HardSwish(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(HardSwish, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return hard_swish(x, self.inplace) | |
| def hard_sigmoid(x, inplace: bool = False): | |
| if inplace: | |
| return x.add_(3.).clamp_(0., 6.).div_(6.) | |
| else: | |
| return F.relu6(x + 3.) / 6. | |
| class HardSigmoid(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(HardSigmoid, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return hard_sigmoid(x, self.inplace) | |
| def hard_mish(x, inplace: bool = False): | |
| """ Hard Mish | |
| Experimental, based on notes by Mish author Diganta Misra at | |
| https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md | |
| """ | |
| if inplace: | |
| return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) | |
| else: | |
| return 0.5 * x * (x + 2).clamp(min=0, max=2) | |
| class HardMish(nn.Module): | |
| def __init__(self, inplace: bool = False): | |
| super(HardMish, self).__init__() | |
| self.inplace = inplace | |
| def forward(self, x): | |
| return hard_mish(x, self.inplace) | |
| class PReLU(nn.PReLU): | |
| """Applies PReLU (w/ dummy inplace arg) | |
| """ | |
| def __init__(self, num_parameters: int = 1, init: float = 0.25, inplace: bool = False) -> None: | |
| super(PReLU, self).__init__(num_parameters=num_parameters, init=init) | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return F.prelu(input, self.weight) | |
| def gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: | |
| return F.gelu(x) | |
| class GELU(nn.Module): | |
| """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) | |
| """ | |
| def __init__(self, inplace: bool = False): | |
| super(GELU, self).__init__() | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return F.gelu(input) | |