Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
import trimesh
|
| 6 |
+
import mcubes
|
| 7 |
+
from torchvision.utils import save_image
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from transformers import AutoModel, AutoConfig
|
| 10 |
+
from rembg import remove, new_session
|
| 11 |
+
from functools import partial
|
| 12 |
+
from kiui.op import recenter
|
| 13 |
+
import kiui
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# we load the pre-trained model from HF
|
| 17 |
+
class LRMGeneratorWrapper:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.config = AutoConfig.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True)
|
| 20 |
+
self.model = AutoModel.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True)
|
| 21 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
+
self.model.to(self.device)
|
| 23 |
+
self.model.eval()
|
| 24 |
+
|
| 25 |
+
def forward(self, image, camera):
|
| 26 |
+
return self.model(image, camera)
|
| 27 |
+
|
| 28 |
+
model_wrapper = LRMGeneratorWrapper()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def preprocess_image(image, source_size):
|
| 32 |
+
session = new_session("isnet-general-use")
|
| 33 |
+
rembg_remove = partial(remove, session=session)
|
| 34 |
+
image = np.array(image)
|
| 35 |
+
image = rembg_remove(image)
|
| 36 |
+
mask = rembg_remove(image, only_mask=True)
|
| 37 |
+
image = recenter(image, mask, border_ratio=0.20)
|
| 38 |
+
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
|
| 39 |
+
if image.shape[1] == 4:
|
| 40 |
+
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
|
| 41 |
+
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
|
| 42 |
+
image = torch.clamp(image, 0, 1)
|
| 43 |
+
return image
|
| 44 |
+
|
| 45 |
+
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
| 46 |
+
"""
|
| 47 |
+
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
| 48 |
+
Return batched fx, fy, cx, cy
|
| 49 |
+
"""
|
| 50 |
+
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
| 51 |
+
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
| 52 |
+
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
| 53 |
+
fx, fy = fx / width, fy / height
|
| 54 |
+
cx, cy = cx / width, cy / height
|
| 55 |
+
return fx, fy, cx, cy
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
|
| 59 |
+
"""
|
| 60 |
+
RT: (N, 3, 4)
|
| 61 |
+
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
| 62 |
+
"""
|
| 63 |
+
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
| 64 |
+
return torch.cat([
|
| 65 |
+
RT.reshape(-1, 12),
|
| 66 |
+
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
|
| 67 |
+
], dim=-1)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _default_intrinsics():
|
| 71 |
+
fx = fy = 384
|
| 72 |
+
cx = cy = 256
|
| 73 |
+
w = h = 512
|
| 74 |
+
intrinsics = torch.tensor([
|
| 75 |
+
[fx, fy],
|
| 76 |
+
[cx, cy],
|
| 77 |
+
[w, h],
|
| 78 |
+
], dtype=torch.float32)
|
| 79 |
+
return intrinsics
|
| 80 |
+
|
| 81 |
+
def _default_source_camera(batch_size: int = 1):
|
| 82 |
+
dist_to_center = 1.5
|
| 83 |
+
canonical_camera_extrinsics = torch.tensor([[
|
| 84 |
+
[0, 0, 1, 1],
|
| 85 |
+
[1, 0, 0, 0],
|
| 86 |
+
[0, 1, 0, 0],
|
| 87 |
+
]], dtype=torch.float32)
|
| 88 |
+
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
|
| 89 |
+
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
| 90 |
+
return source_camera.repeat(batch_size, 1)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py
|
| 94 |
+
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True):
|
| 95 |
+
image = preprocess_image(image, source_size).to(model_wrapper.device)
|
| 96 |
+
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
|
| 97 |
+
# TODO: export video we need render_camera
|
| 98 |
+
# render_camera = _default_render_cameras(batch_size=1).to(model_wrapper.device)
|
| 99 |
+
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
planes = model_wrapper.forward(image, source_camera)
|
| 102 |
+
|
| 103 |
+
if export_mesh:
|
| 104 |
+
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
|
| 105 |
+
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
|
| 106 |
+
vtx = vtx / (mesh_size - 1) * 2 - 1
|
| 107 |
+
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
|
| 108 |
+
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
|
| 109 |
+
vtx_colors = (vtx_colors * 255).astype(np.uint8)
|
| 110 |
+
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
|
| 111 |
+
|
| 112 |
+
mesh_path = "awesome_mesh.obj"
|
| 113 |
+
mesh.export(mesh_path, 'obj')
|
| 114 |
+
return mesh_path
|
| 115 |
+
|
| 116 |
+
# we will convert image to mesh
|
| 117 |
+
def step_1_generate_obj(image):
|
| 118 |
+
mesh_path = generate_mesh(image)
|
| 119 |
+
return mesh_path
|
| 120 |
+
|
| 121 |
+
# we will convert mesh to 3d-image
|
| 122 |
+
def step_2_display_3d_model(mesh_file):
|
| 123 |
+
return mesh_file
|
| 124 |
+
|
| 125 |
+
with gr.Blocks() as demo:
|
| 126 |
+
with gr.Row():
|
| 127 |
+
with gr.Column():
|
| 128 |
+
img_input = gr.Image(type="pil", label="Input Image")
|
| 129 |
+
generate_button = gr.Button("Generate and Visualize 3D Model")
|
| 130 |
+
obj_file_output = gr.File(label="Download .obj File")
|
| 131 |
+
|
| 132 |
+
with gr.Column():
|
| 133 |
+
model_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model Visualization")
|
| 134 |
+
|
| 135 |
+
def generate_and_visualize(image):
|
| 136 |
+
mesh_path = step_1_generate_obj(image)
|
| 137 |
+
return mesh_path, mesh_path
|
| 138 |
+
|
| 139 |
+
generate_button.click(generate_and_visualize, inputs=img_input, outputs=[obj_file_output, model_output])
|
| 140 |
+
|
| 141 |
+
demo.launch()
|