Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +81 -81
src/streamlit_app.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
# ✅ Cache-Safe Multimodal App
|
| 3 |
# ================================
|
| 4 |
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
# ====== Force all cache dirs to /tmp (writable in most environments) ======
|
| 8 |
CACHE_BASE = "/tmp/cache"
|
|
@@ -13,6 +13,10 @@ os.environ["HF_DATASETS_CACHE"] = f"{CACHE_BASE}/hf_datasets"
|
|
| 13 |
os.environ["TORCH_HOME"] = f"{CACHE_BASE}/torch"
|
| 14 |
os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
|
| 15 |
os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Create the directories before imports
|
| 18 |
for path in os.environ.values():
|
|
@@ -26,37 +30,30 @@ from sentence_transformers import SentenceTransformer, util
|
|
| 26 |
from transformers import CLIPProcessor, CLIPModel
|
| 27 |
from datasets import load_dataset, get_dataset_split_names
|
| 28 |
from PIL import Image
|
| 29 |
-
import
|
| 30 |
import comet_llm
|
| 31 |
from opik import track
|
| 32 |
|
| 33 |
-
os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
|
| 34 |
-
os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
|
| 35 |
-
os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
|
| 36 |
-
|
| 37 |
-
os.makedirs("/tmp/.streamlit", exist_ok=True)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
# ========== 🔑 API Key ==========
|
| 41 |
-
|
| 42 |
os.environ["OPIK_API_KEY"] = os.getenv("OPIK_API_KEY")
|
| 43 |
os.environ["OPIK_WORKSPACE"] = os.getenv("OPIK_WORKSPACE")
|
| 44 |
# ========== 📥 Load Models ==========
|
| 45 |
@st.cache_resource(show_spinner=False)
|
| 46 |
def load_models():
|
| 47 |
-
|
| 48 |
"openai/clip-vit-base-patch32",
|
| 49 |
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 50 |
)
|
| 51 |
-
|
| 52 |
"openai/clip-vit-base-patch32",
|
| 53 |
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 54 |
)
|
| 55 |
-
|
| 56 |
"all-MiniLM-L6-v2",
|
| 57 |
cache_folder=os.environ["SENTENCE_TRANSFORMERS_HOME"]
|
| 58 |
)
|
| 59 |
-
return
|
| 60 |
|
| 61 |
clip_model, clip_processor, text_model = load_models()
|
| 62 |
|
|
@@ -72,10 +69,24 @@ def load_medical_data():
|
|
| 72 |
)
|
| 73 |
return dataset
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
data = load_medical_data()
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
client = OpenAI(api_key=openai.api_key)
|
| 79 |
# Temporary debug display
|
| 80 |
#st.write("Dataset columns:", data.features.keys())
|
| 81 |
|
|
@@ -102,17 +113,37 @@ combined_texts = prepare_combined_texts(data)
|
|
| 102 |
def embed_dataset_texts(_texts):
|
| 103 |
return text_model.encode(_texts, convert_to_tensor=True)
|
| 104 |
|
| 105 |
-
def embed_query_text(
|
| 106 |
-
return text_model.encode([
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Pick which text column to use
|
| 109 |
TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
|
| 110 |
|
| 111 |
# ========== 🧑⚕️ App UI ==========
|
| 112 |
-
st.title("🩺
|
| 113 |
|
| 114 |
query = st.text_input("Enter your medical question or symptom description:")
|
| 115 |
-
|
| 116 |
|
| 117 |
# Add author info in the sidebar
|
| 118 |
with st.sidebar:
|
|
@@ -120,44 +151,8 @@ with st.sidebar:
|
|
| 120 |
st.markdown("**Vasan Iyer**")
|
| 121 |
st.markdown("**Eric J Giacomucci**")
|
| 122 |
st.markdown("[GitHub](https://github.com/Vaiy108)")
|
| 123 |
-
st.markdown("[LinkedIn](https://linkedin.com/in/vasan-iyer)")
|
| 124 |
-
|
| 125 |
-
@track
|
| 126 |
-
def get_chat_completion_openai(client, prompt: str):
|
| 127 |
-
return client.chat.completions.create(
|
| 128 |
-
model="gpt-4o", # or "gpt-4" if you need the older GPT-4
|
| 129 |
-
messages=[{"role": "user", "content": prompt}],
|
| 130 |
-
temperature=0.5,
|
| 131 |
-
max_tokens=150
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
@track
|
| 135 |
-
def get_similar_prompt(query):
|
| 136 |
-
text_embeddings = embed_dataset_texts(combined_texts) # cached
|
| 137 |
-
query_embedding = embed_query_text(query) # recalculated each time
|
| 138 |
-
|
| 139 |
-
cos_scores = util.pytorch_cos_sim(query_embedding, text_embeddings)[0]
|
| 140 |
-
top_result = torch.topk(cos_scores, k=1)
|
| 141 |
-
idx = top_result.indices[0].item()
|
| 142 |
-
return data[idx]
|
| 143 |
-
|
| 144 |
-
# Cache dataset image embeddings (takes time, so cached)
|
| 145 |
-
@st.cache_data(show_spinner=True)
|
| 146 |
-
def embed_dataset_images(_dataset):
|
| 147 |
-
features = []
|
| 148 |
-
for item in _dataset:
|
| 149 |
-
# Load image from URL/path or raw bytes - adapt this if needed
|
| 150 |
-
img = item["image"]
|
| 151 |
-
inputs = clip_processor(images=img, return_tensors="pt")
|
| 152 |
-
with torch.no_grad():
|
| 153 |
-
feat = clip_model.get_image_features(**inputs)
|
| 154 |
-
feat /= feat.norm(p=2, dim=-1, keepdim=True)
|
| 155 |
-
features.append(feat.cpu())
|
| 156 |
-
return torch.cat(features, dim=0)
|
| 157 |
-
|
| 158 |
-
dataset_image_features = embed_dataset_images(data)
|
| 159 |
|
| 160 |
-
#if query:
|
| 161 |
if st.button("Submit") and query:
|
| 162 |
with st.spinner("Searching medical cases..."):
|
| 163 |
|
|
@@ -172,7 +167,7 @@ if st.button("Submit") and query:
|
|
| 172 |
st.markdown(f"**Case Description:** {selected[TEXT_COLUMN]}")
|
| 173 |
|
| 174 |
# GPT Explanation
|
| 175 |
-
if
|
| 176 |
prompt = f"Explain this case in plain English: {selected[TEXT_COLUMN]}"
|
| 177 |
|
| 178 |
explanation = get_chat_completion_openai(client, prompt)
|
|
@@ -182,32 +177,37 @@ if st.button("Submit") and query:
|
|
| 182 |
else:
|
| 183 |
st.warning("OpenAI API key not found. Please set OPENAI_API_KEY as a secret environment variable.")
|
| 184 |
|
| 185 |
-
if uploaded_file is not None:
|
| 186 |
-
print('uploading file')
|
| 187 |
-
print(uploaded_file)
|
| 188 |
-
query_image = Image.open(uploaded_file).convert("RGB")
|
| 189 |
-
st.image(query_image, caption="Your uploaded image", use_container_width=True)
|
| 190 |
|
| 191 |
-
# Embed uploaded image
|
| 192 |
-
inputs = clip_processor(images=query_image, return_tensors="pt")
|
| 193 |
-
with torch.no_grad():
|
| 194 |
-
query_feat = clip_model.get_image_features(**inputs)
|
| 195 |
-
query_feat /= query_feat.norm(p=2, dim=-1, keepdim=True)
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
else:
|
| 211 |
-
print("no image")
|
| 212 |
|
| 213 |
-
st.caption("This chatbot is for educational purposes only and does not provide medical advice.")
|
|
|
|
| 2 |
# ✅ Cache-Safe Multimodal App
|
| 3 |
# ================================
|
| 4 |
|
| 5 |
+
import shutil, os
|
| 6 |
|
| 7 |
# ====== Force all cache dirs to /tmp (writable in most environments) ======
|
| 8 |
CACHE_BASE = "/tmp/cache"
|
|
|
|
| 13 |
os.environ["TORCH_HOME"] = f"{CACHE_BASE}/torch"
|
| 14 |
os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
|
| 15 |
os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
|
| 16 |
+
os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
|
| 17 |
+
|
| 18 |
+
# Create the directories before imports
|
| 19 |
+
os.makedirs(os.environ["STREAMLIT_CONFIG_DIR"], exist_ok=True)
|
| 20 |
|
| 21 |
# Create the directories before imports
|
| 22 |
for path in os.environ.values():
|
|
|
|
| 30 |
from transformers import CLIPProcessor, CLIPModel
|
| 31 |
from datasets import load_dataset, get_dataset_split_names
|
| 32 |
from PIL import Image
|
| 33 |
+
from openai import OpenAI
|
| 34 |
import comet_llm
|
| 35 |
from opik import track
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# ========== 🔑 API Key ==========
|
| 38 |
+
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
|
| 39 |
os.environ["OPIK_API_KEY"] = os.getenv("OPIK_API_KEY")
|
| 40 |
os.environ["OPIK_WORKSPACE"] = os.getenv("OPIK_WORKSPACE")
|
| 41 |
# ========== 📥 Load Models ==========
|
| 42 |
@st.cache_resource(show_spinner=False)
|
| 43 |
def load_models():
|
| 44 |
+
_clip_model = CLIPModel.from_pretrained(
|
| 45 |
"openai/clip-vit-base-patch32",
|
| 46 |
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 47 |
)
|
| 48 |
+
_clip_processor = CLIPProcessor.from_pretrained(
|
| 49 |
"openai/clip-vit-base-patch32",
|
| 50 |
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 51 |
)
|
| 52 |
+
_text_model = SentenceTransformer(
|
| 53 |
"all-MiniLM-L6-v2",
|
| 54 |
cache_folder=os.environ["SENTENCE_TRANSFORMERS_HOME"]
|
| 55 |
)
|
| 56 |
+
return _clip_model, _clip_processor, _text_model
|
| 57 |
|
| 58 |
clip_model, clip_processor, text_model = load_models()
|
| 59 |
|
|
|
|
| 69 |
)
|
| 70 |
return dataset
|
| 71 |
|
| 72 |
+
# Cache dataset image embeddings (takes time, so cached)
|
| 73 |
+
@st.cache_data(show_spinner=True)
|
| 74 |
+
def embed_dataset_images(_dataset):
|
| 75 |
+
features = []
|
| 76 |
+
for item in _dataset:
|
| 77 |
+
# Load image from URL/path or raw bytes - adapt this if needed
|
| 78 |
+
img = item["image"]
|
| 79 |
+
inputs_img = clip_processor(images=img, return_tensors="pt")
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
feat = clip_model.get_image_features(**inputs_img)
|
| 82 |
+
feat /= feat.norm(p=2, dim=-1, keepdim=True)
|
| 83 |
+
features.append(feat.cpu())
|
| 84 |
+
return torch.cat(features, dim=0)
|
| 85 |
+
|
| 86 |
data = load_medical_data()
|
| 87 |
+
dataset_image_features = embed_dataset_images(data)
|
| 88 |
|
| 89 |
+
client = OpenAI(api_key=OpenAI.api_key)
|
|
|
|
| 90 |
# Temporary debug display
|
| 91 |
#st.write("Dataset columns:", data.features.keys())
|
| 92 |
|
|
|
|
| 113 |
def embed_dataset_texts(_texts):
|
| 114 |
return text_model.encode(_texts, convert_to_tensor=True)
|
| 115 |
|
| 116 |
+
def embed_query_text(_query):
|
| 117 |
+
return text_model.encode([_query], convert_to_tensor=True)[0]
|
| 118 |
+
|
| 119 |
+
@track
|
| 120 |
+
def get_chat_completion_openai(_client, _prompt: str):
|
| 121 |
+
return _client.chat.completions.create(
|
| 122 |
+
model="gpt-4o", # or "gpt-4" if you need the older GPT-4
|
| 123 |
+
messages=[{"role": "user", "content": _prompt}],
|
| 124 |
+
temperature=0.5,
|
| 125 |
+
max_tokens=425
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
@track
|
| 129 |
+
def get_similar_prompt(_query):
|
| 130 |
+
text_embeddings = embed_dataset_texts(combined_texts) # cached
|
| 131 |
+
query_embedding = embed_query_text(_query) # recalculated each time
|
| 132 |
+
|
| 133 |
+
cos_scores = util.pytorch_cos_sim(query_embedding, text_embeddings)[0]
|
| 134 |
+
top_result = torch.topk(cos_scores, k=1)
|
| 135 |
+
_idx = top_result.indices[0].item()
|
| 136 |
+
return data[_idx]
|
| 137 |
+
|
| 138 |
|
| 139 |
# Pick which text column to use
|
| 140 |
TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
|
| 141 |
|
| 142 |
# ========== 🧑⚕️ App UI ==========
|
| 143 |
+
st.title("🩺 Multimodal Medical Chatbot")
|
| 144 |
|
| 145 |
query = st.text_input("Enter your medical question or symptom description:")
|
| 146 |
+
uploaded_files = st.file_uploader("Upload an image to find similar medical cases:", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
| 147 |
|
| 148 |
# Add author info in the sidebar
|
| 149 |
with st.sidebar:
|
|
|
|
| 151 |
st.markdown("**Vasan Iyer**")
|
| 152 |
st.markdown("**Eric J Giacomucci**")
|
| 153 |
st.markdown("[GitHub](https://github.com/Vaiy108)")
|
| 154 |
+
st.markdown("[LinkedIn](https://linkedin.com/in/vasan-iyer)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
|
|
|
| 156 |
if st.button("Submit") and query:
|
| 157 |
with st.spinner("Searching medical cases..."):
|
| 158 |
|
|
|
|
| 167 |
st.markdown(f"**Case Description:** {selected[TEXT_COLUMN]}")
|
| 168 |
|
| 169 |
# GPT Explanation
|
| 170 |
+
if OpenAI.api_key:
|
| 171 |
prompt = f"Explain this case in plain English: {selected[TEXT_COLUMN]}"
|
| 172 |
|
| 173 |
explanation = get_chat_completion_openai(client, prompt)
|
|
|
|
| 177 |
else:
|
| 178 |
st.warning("OpenAI API key not found. Please set OPENAI_API_KEY as a secret environment variable.")
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
if uploaded_files is not None:
|
| 183 |
+
with st.spinner("Searching medical cases..."):
|
| 184 |
+
st.write(f"Number of files: {len(uploaded_files)}")
|
| 185 |
+
|
| 186 |
+
if len(uploaded_files) > 0:
|
| 187 |
+
print(uploaded_files)
|
| 188 |
+
uploaded_file = uploaded_files[0]
|
| 189 |
+
st.write(f'uploading file {uploaded_file.name}')
|
| 190 |
+
query_image = Image.open(uploaded_file).convert("RGB")
|
| 191 |
+
st.image(query_image, caption="Your uploaded image", use_container_width=True)
|
| 192 |
+
|
| 193 |
+
# Embed uploaded image
|
| 194 |
+
inputs = clip_processor(images=query_image, return_tensors="pt")
|
| 195 |
+
with torch.no_grad():
|
| 196 |
+
query_feat = clip_model.get_image_features(**inputs)
|
| 197 |
+
query_feat /= query_feat.norm(p=2, dim=-1, keepdim=True)
|
| 198 |
+
|
| 199 |
+
# Compute cosine similarity
|
| 200 |
+
similarities = (dataset_image_features @ query_feat.T).squeeze(1) # [num_dataset_images]
|
| 201 |
|
| 202 |
+
top_k = 3
|
| 203 |
+
top_results = torch.topk(similarities, k=top_k)
|
| 204 |
|
| 205 |
+
st.write(f"Top {top_k} similar medical cases:")
|
| 206 |
|
| 207 |
+
for rank, idx in enumerate(top_results.indices):
|
| 208 |
+
score = top_results.values[rank].item()
|
| 209 |
+
similar_img = data[int(idx)]['image']
|
| 210 |
+
st.image(similar_img, caption=f"Similarity: {score:.3f}", use_container_width=True)
|
| 211 |
+
st.markdown(f"**Case description:** {data[int(idx)]['complaints']}")
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
st.caption("This chatbot is for educational purposes only and does not provide medical advice.")
|