Spaces:
Sleeping
Sleeping
| from omegaconf import OmegaConf | |
| from query import VectaraQuery | |
| import os | |
| from PIL import Image | |
| import uuid | |
| import streamlit as st | |
| from streamlit_pills import pills | |
| from streamlit_feedback import streamlit_feedback | |
| from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex | |
| from dotenv import load_dotenv | |
| load_dotenv(override=True) | |
| max_examples = 6 | |
| languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara', | |
| 'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas', | |
| 'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr', | |
| 'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'} | |
| # Setup for HTTP API Calls to Amplitude Analytics | |
| if 'device_id' not in st.session_state: | |
| st.session_state.device_id = str(uuid.uuid4()) | |
| if "feedback_key" not in st.session_state: | |
| st.session_state.feedback_key = 0 | |
| def isTrue(x) -> bool: | |
| if isinstance(x, bool): | |
| return x | |
| return x.strip().lower() == 'true' | |
| def launch_bot(): | |
| def reset(): | |
| st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'π€'}] | |
| st.session_state.ex_prompt = None | |
| st.session_state.first_turn = True | |
| def generate_response(question): | |
| response = vq.submit_query(question, languages[st.session_state.language]) | |
| return response | |
| def generate_streaming_response(question): | |
| response = vq.submit_query_streaming(question, languages[st.session_state.language]) | |
| return response | |
| def show_example_questions(): | |
| if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: | |
| selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) | |
| if selected_example: | |
| st.session_state.ex_prompt = selected_example | |
| st.session_state.first_turn = False | |
| return True | |
| return False | |
| if 'cfg' not in st.session_state: | |
| corpus_keys = str(os.environ['corpus_keys']).split(',') | |
| cfg = OmegaConf.create({ | |
| 'corpus_keys': corpus_keys, | |
| 'api_key': str(os.environ['api_key']), | |
| 'title': os.environ['title'], | |
| 'source_data_desc': os.environ['source_data_desc'], | |
| 'streaming': isTrue(os.environ.get('streaming', False)), | |
| 'prompt_name': os.environ.get('prompt_name', None), | |
| 'examples': os.environ.get('examples', None), | |
| 'language': 'English' | |
| }) | |
| st.session_state.cfg = cfg | |
| st.session_state.ex_prompt = None | |
| st.session_state.first_turn = True | |
| st.session_state.language = cfg.language | |
| example_messages = [example.strip() for example in cfg.examples.split(",")] | |
| st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples] | |
| st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name) | |
| cfg = st.session_state.cfg | |
| vq = st.session_state.vq | |
| st.set_page_config(page_title=cfg.title, layout="wide") | |
| # left side content | |
| with st.sidebar: | |
| image = Image.open('Vectara-logo.png') | |
| st.image(image, width=175) | |
| st.markdown(f"## About\n\n" | |
| f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n") | |
| cfg.language = st.selectbox('Language:', languages.keys()) | |
| if st.session_state.language != cfg.language: | |
| st.session_state.language = cfg.language | |
| reset() | |
| st.rerun() | |
| st.markdown("\n") | |
| bc1, _ = st.columns([1, 1]) | |
| with bc1: | |
| if st.button('Start Over'): | |
| reset() | |
| st.rerun() | |
| st.markdown("---") | |
| st.markdown( | |
| "## How this works?\n" | |
| "This app was built with [Vectara](https://vectara.com).\n" | |
| "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n" | |
| ) | |
| st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True) | |
| if "messages" not in st.session_state.keys(): | |
| reset() | |
| # Display chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"], avatar=message["avatar"]): | |
| st.write(message["content"]) | |
| example_container = st.empty() | |
| with example_container: | |
| if show_example_questions(): | |
| example_container.empty() | |
| st.rerun() | |
| # select prompt from example question or user provided input | |
| if st.session_state.ex_prompt: | |
| prompt = st.session_state.ex_prompt | |
| else: | |
| prompt = st.chat_input() | |
| if prompt: | |
| st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) | |
| with st.chat_message("user", avatar="π§βπ»"): | |
| st.write(prompt) | |
| st.session_state.ex_prompt = None | |
| # Generate a new response if last message is not from assistant | |
| if st.session_state.messages[-1]["role"] != "assistant": | |
| with st.chat_message("assistant", avatar="π€"): | |
| if cfg.streaming: | |
| stream = generate_streaming_response(prompt) | |
| response = st.write_stream(stream) | |
| else: | |
| with st.spinner("Thinking..."): | |
| response = generate_response(prompt) | |
| st.write(response) | |
| response = escape_dollars_outside_latex(response) | |
| message = {"role": "assistant", "content": response, "avatar": 'π€'} | |
| st.session_state.messages.append(message) | |
| # Send query and response to Amplitude Analytics | |
| send_amplitude_data( | |
| user_query=st.session_state.messages[-2]["content"], | |
| chat_response=st.session_state.messages[-1]["content"], | |
| demo_name=cfg["title"], | |
| language=st.session_state.language | |
| ) | |
| st.rerun() | |
| if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"): | |
| streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key, | |
| kwargs = {"user_query": st.session_state.messages[-2]["content"], | |
| "chat_response": st.session_state.messages[-1]["content"], | |
| "demo_name": cfg["title"], | |
| "response_language": st.session_state.language}) | |
| if __name__ == "__main__": | |
| launch_bot() |