import os, argparse, numpy as np from glob import glob try: from app.inference_wav2vec import Detector except ImportError: from inference_wav2vec import Detector def collect(root): H = sorted(glob(os.path.join(root, "human", "*.wav"))) A = sorted(glob(os.path.join(root, "ai", "*.wav"))) return H, A def main(a): det = Detector(weights_path=a.weights) H, A = collect(a.root) ys, ps_mic, ps_up = [], [], [] for p in H: ys.append(0) ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"]) ps_up.append(det.predict_proba(p, source_hint="upload")["ai"]) for p in A: ys.append(1) ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"]) ps_up.append(det.predict_proba(p, source_hint="upload")["ai"]) ys = np.array(ys); ps_mic = np.array(ps_mic); ps_up = np.array(ps_up) def sweep(ps): best = (0.5, -1, 1e9) for thr in np.linspace(0.5, 0.8, 61): pred = (ps >= thr).astype(int) tp = ((pred==1)&(ys==1)).sum(); fp = ((pred==1)&(ys==0)).sum() fn = ((pred==0)&(ys==1)).sum() prec = tp / max(tp+fp,1); rec = tp / max(tp+fn,1) f1 = 2*prec*rec / max(prec+rec,1e-9) if (f1 > best[1]) or (f1==best[1] and fp < best[2]): best = (float(thr), float(f1), int(fp)) return best mt, mf1, mfp = sweep(ps_mic) ut, uf1, ufp = sweep(ps_up) print(f"MIC threshold ~ {mt:.2f} (F1={mf1:.3f}, human_as_ai={mfp})") print(f"UPLOAD threshold ~ {ut:.2f} (F1={uf1:.3f}, human_as_ai={ufp})") print("Set:") print(f' $env:DETECTOR_MIC_THRESHOLD="{mt:.2f}"') print(f' $env:DETECTOR_UPLOAD_THRESHOLD="{ut:.2f}"') if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument("--root", required=True, help="folder with human/ and ai/") ap.add_argument("--weights", default="app/models/weights/wav2vec2_classifier.pth") main(ap.parse_args())