Spaces:
Running
Running
Upload calibrate_threshold_wav2vec.py
Browse files
scripts/calibrate_threshold_wav2vec.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, argparse, numpy as np
|
| 2 |
+
from glob import glob
|
| 3 |
+
|
| 4 |
+
try: from app.inference_wav2vec import Detector
|
| 5 |
+
except ImportError: from inference_wav2vec import Detector
|
| 6 |
+
|
| 7 |
+
def collect(root):
|
| 8 |
+
H = sorted(glob(os.path.join(root, "human", "*.wav")))
|
| 9 |
+
A = sorted(glob(os.path.join(root, "ai", "*.wav")))
|
| 10 |
+
return H, A
|
| 11 |
+
|
| 12 |
+
def main(a):
|
| 13 |
+
det = Detector(weights_path=a.weights)
|
| 14 |
+
H, A = collect(a.root)
|
| 15 |
+
ys, ps_mic, ps_up = [], [], []
|
| 16 |
+
for p in H:
|
| 17 |
+
ys.append(0)
|
| 18 |
+
ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"])
|
| 19 |
+
ps_up.append(det.predict_proba(p, source_hint="upload")["ai"])
|
| 20 |
+
for p in A:
|
| 21 |
+
ys.append(1)
|
| 22 |
+
ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"])
|
| 23 |
+
ps_up.append(det.predict_proba(p, source_hint="upload")["ai"])
|
| 24 |
+
ys = np.array(ys); ps_mic = np.array(ps_mic); ps_up = np.array(ps_up)
|
| 25 |
+
|
| 26 |
+
def sweep(ps):
|
| 27 |
+
best = (0.5, -1, 1e9)
|
| 28 |
+
for thr in np.linspace(0.5, 0.8, 61):
|
| 29 |
+
pred = (ps >= thr).astype(int)
|
| 30 |
+
tp = ((pred==1)&(ys==1)).sum(); fp = ((pred==1)&(ys==0)).sum()
|
| 31 |
+
fn = ((pred==0)&(ys==1)).sum()
|
| 32 |
+
prec = tp / max(tp+fp,1); rec = tp / max(tp+fn,1)
|
| 33 |
+
f1 = 2*prec*rec / max(prec+rec,1e-9)
|
| 34 |
+
if (f1 > best[1]) or (f1==best[1] and fp < best[2]):
|
| 35 |
+
best = (float(thr), float(f1), int(fp))
|
| 36 |
+
return best
|
| 37 |
+
|
| 38 |
+
mt, mf1, mfp = sweep(ps_mic)
|
| 39 |
+
ut, uf1, ufp = sweep(ps_up)
|
| 40 |
+
print(f"MIC threshold ~ {mt:.2f} (F1={mf1:.3f}, human_as_ai={mfp})")
|
| 41 |
+
print(f"UPLOAD threshold ~ {ut:.2f} (F1={uf1:.3f}, human_as_ai={ufp})")
|
| 42 |
+
print("Set:")
|
| 43 |
+
print(f' $env:DETECTOR_MIC_THRESHOLD="{mt:.2f}"')
|
| 44 |
+
print(f' $env:DETECTOR_UPLOAD_THRESHOLD="{ut:.2f}"')
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
ap = argparse.ArgumentParser()
|
| 48 |
+
ap.add_argument("--root", required=True, help="folder with human/ and ai/")
|
| 49 |
+
ap.add_argument("--weights", default="app/models/weights/wav2vec2_classifier.pth")
|
| 50 |
+
main(ap.parse_args())
|