Spaces:
Sleeping
Sleeping
| import os, argparse, numpy as np | |
| from glob import glob | |
| try: from app.inference_wav2vec import Detector | |
| except ImportError: from inference_wav2vec import Detector | |
| def collect(root): | |
| H = sorted(glob(os.path.join(root, "human", "*.wav"))) | |
| A = sorted(glob(os.path.join(root, "ai", "*.wav"))) | |
| return H, A | |
| def main(a): | |
| det = Detector(weights_path=a.weights) | |
| H, A = collect(a.root) | |
| ys, ps_mic, ps_up = [], [], [] | |
| for p in H: | |
| ys.append(0) | |
| ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"]) | |
| ps_up.append(det.predict_proba(p, source_hint="upload")["ai"]) | |
| for p in A: | |
| ys.append(1) | |
| ps_mic.append(det.predict_proba(p, source_hint="microphone")["ai"]) | |
| ps_up.append(det.predict_proba(p, source_hint="upload")["ai"]) | |
| ys = np.array(ys); ps_mic = np.array(ps_mic); ps_up = np.array(ps_up) | |
| def sweep(ps): | |
| best = (0.5, -1, 1e9) | |
| for thr in np.linspace(0.5, 0.8, 61): | |
| pred = (ps >= thr).astype(int) | |
| tp = ((pred==1)&(ys==1)).sum(); fp = ((pred==1)&(ys==0)).sum() | |
| fn = ((pred==0)&(ys==1)).sum() | |
| prec = tp / max(tp+fp,1); rec = tp / max(tp+fn,1) | |
| f1 = 2*prec*rec / max(prec+rec,1e-9) | |
| if (f1 > best[1]) or (f1==best[1] and fp < best[2]): | |
| best = (float(thr), float(f1), int(fp)) | |
| return best | |
| mt, mf1, mfp = sweep(ps_mic) | |
| ut, uf1, ufp = sweep(ps_up) | |
| print(f"MIC threshold ~ {mt:.2f} (F1={mf1:.3f}, human_as_ai={mfp})") | |
| print(f"UPLOAD threshold ~ {ut:.2f} (F1={uf1:.3f}, human_as_ai={ufp})") | |
| print("Set:") | |
| print(f' $env:DETECTOR_MIC_THRESHOLD="{mt:.2f}"') | |
| print(f' $env:DETECTOR_UPLOAD_THRESHOLD="{ut:.2f}"') | |
| if __name__ == "__main__": | |
| ap = argparse.ArgumentParser() | |
| ap.add_argument("--root", required=True, help="folder with human/ and ai/") | |
| ap.add_argument("--weights", default="app/models/weights/wav2vec2_classifier.pth") | |
| main(ap.parse_args()) |