File size: 9,985 Bytes
e2c61ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os, json, argparse, random
from pathlib import Path
from contextlib import nullcontext

import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler

try:
    from .models.wav2vec_detector import Wav2VecClassifier
    from .utils.audio import load_audio, pad_or_trim, TARGET_SR
except ImportError:
    from app.models.wav2vec_detector import Wav2VecClassifier
    from app.utils.audio import load_audio, pad_or_trim, TARGET_SR

from audiomentations import Compose, AddGaussianNoise, BandPassFilter
def make_gain(min_db, max_db, p):
    from audiomentations import Gain as _Gain
    try: return _Gain(min_gain_in_db=min_db, max_gain_in_db=max_db, p=p)
    except TypeError: return _Gain(min_gain_db=min_db, max_gain_db=max_db, p=p)

def set_seed(s=42):
    random.seed(s); np.random.seed(s); torch.manual_seed(s); torch.cuda.manual_seed_all(s)

def peak_normalize(y: np.ndarray, peak: float = 0.95, eps: float = 1e-9) -> np.ndarray:
    m = float(np.max(np.abs(y)) + eps)
    return (y / m) * peak if m > 0 else y

def trim_silence(y: np.ndarray, sr: int, thresh_db: float = 40.0, min_ms: int = 30) -> np.ndarray:
    if y.size == 0: return y
    win = max(1, int(sr * 0.02)); pad = max(1, int(sr * (min_ms / 1000.0)))
    energy = np.convolve(y**2, np.ones(win)/win, mode="same")
    ref = np.max(energy) + 1e-12
    mask = 10*np.log10(energy/ref + 1e-12) > -thresh_db
    if not np.any(mask): return y
    idx = np.where(mask)[0]; start=max(0,int(idx[0]-pad)); end=min(len(y),int(idx[-1]+pad))
    return y[start:end]

class WavDataset(Dataset):
    """data_dir/{human,ai}/*.wav"""
    def __init__(self, root, split="train", val_ratio=0.15, seed=42, clip_seconds=3.0):
        self.root = Path(root); self.clip = float(clip_seconds)
        human = sorted((self.root/"human").glob("*.wav"))
        ai    = sorted((self.root/"ai").glob("*.wav"))
        items = [(p,0) for p in human] + [(p,1) for p in ai]
        rng = random.Random(seed); rng.shuffle(items)
        n_val = int(len(items)*val_ratio)
        self.items = items[n_val:] if split=="train" else items[:n_val]
        self.is_train = split=="train"
        self.nh = sum(1 for _,y in self.items if y==0)
        self.na = sum(1 for _,y in self.items if y==1)
        self.aug_h = Compose([AddGaussianNoise(0.001,0.01,p=0.3), make_gain(-4,4,p=0.3)])
        self.aug_a = Compose([BandPassFilter(200.0,3500.0,p=0.5), AddGaussianNoise(0.001,0.01,p=0.3), make_gain(-6,6,p=0.3)])

    def __len__(self): return len(self.items)
    def __getitem__(self, idx):
        path, label = self.items[idx]
        y, sr = load_audio(str(path), TARGET_SR)
        y = trim_silence(y, sr, 40.0, 30)
        y = peak_normalize(y, 0.95)
        y = pad_or_trim(y, duration_s=self.clip, sr=sr)
        if self.is_train:
            y = (self.aug_a if label==1 else self.aug_h)(samples=y, sample_rate=sr)
        return torch.from_numpy(y).float(), torch.tensor(label, dtype=torch.long)

def make_loaders(args):
    ds_tr = WavDataset(args.data_dir, "train", args.val_ratio, args.seed, args.clip_seconds)
    ds_va = WavDataset(args.data_dir, "val",   args.val_ratio, args.seed, args.clip_seconds)

    # Weighted sampler to balance classes
    labels = [y for _, y in ds_tr.items]
    n0 = max(1, labels.count(0)); n1 = max(1, labels.count(1))
    w0 = (n0 + n1) / (2 * n0); w1 = (n0 + n1) / (2 * n1)
    sample_weights = [w0 if y == 0 else w1 for y in labels]
    sampler = WeightedRandomSampler(sample_weights, num_samples=len(labels), replacement=True)

    workers = args.workers if args.workers >= 0 else (0 if os.name=="nt" else max(1,(os.cpu_count() or 4)//2))
    pin = (not args.cpu) and torch.cuda.is_available()
    dl_tr = DataLoader(ds_tr, batch_size=args.batch_size, sampler=sampler,
                       num_workers=workers, pin_memory=pin, drop_last=True)
    dl_va = DataLoader(ds_va, batch_size=max(1,args.batch_size//2), shuffle=False,
                       num_workers=workers, pin_memory=pin)
    return ds_tr, ds_va, dl_tr, dl_va

class FocalLoss(torch.nn.Module):
    def __init__(self, alpha=None, gamma=1.5):
        super().__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.ce = torch.nn.CrossEntropyLoss(weight=alpha)
    def forward(self, logits, target):
        ce = self.ce(logits, target)
        with torch.no_grad():
            pt = torch.exp(-ce)
        return ((1 - pt) ** self.gamma) * ce

def train_one_epoch(model, dl, device, opt, scaler, autocast_ctx, loss_fn, grad_accum=1):
    model.train(); total=0.0; correct=0; seen=0
    opt.zero_grad(set_to_none=True)
    for step,(x,y) in enumerate(dl):
        x=x.to(device,non_blocking=True); y=y.to(device,non_blocking=True)
        with autocast_ctx:
            logits,_=model(x); loss=loss_fn(logits,y)
        loss=loss/grad_accum
        if getattr(scaler,"is_enabled",lambda:False)(): scaler.scale(loss).backward()
        else: loss.backward()
        if (step+1)%grad_accum==0:
            if getattr(scaler,"is_enabled",lambda:False)():
                scaler.step(opt); scaler.update()
            else:
                opt.step()
            opt.zero_grad(set_to_none=True)
        total += float(loss) * x.size(0) * grad_accum
        correct += int((logits.argmax(1)==y).sum().item()); seen += x.size(0)
    return total/max(seen,1), correct/max(seen,1)

@torch.no_grad()
def evaluate(model, dl, device, loss_fn):
    model.eval(); total=0.0; correct=0; seen=0
    for x,y in dl:
        x=x.to(device,non_blocking=True); y=y.to(device,non_blocking=True)
        logits,_=model(x); loss=loss_fn(logits,y)
        total += float(loss) * x.size(0); correct += int((logits.argmax(1)==y).sum().item()); seen += x.size(0)
    return total/max(seen,1), correct/max(seen,1)

def main(args):
    set_seed(args.seed)
    device = "cuda" if (torch.cuda.is_available() and not args.cpu) else "cpu"
    cudnn.benchmark = True

    ds_tr, ds_va, dl_tr, dl_va = make_loaders(args)
    print(f"Train items: {len(ds_tr)} (human={ds_tr.nh}, ai={ds_tr.na})")
    print(f"Val   items: {len(ds_va)}")

    model = Wav2VecClassifier(
        encoder=args.encoder,
        unfreeze_last=args.unfreeze_last,
        dropout=args.dropout,
        hidden=args.hidden
    ).to(device)

    # Focal loss with class weights
    nh, na = ds_tr.nh, ds_tr.na
    w = torch.tensor([(nh+na)/(2*nh+1e-6), (nh+na)/(2*na+1e-6)], dtype=torch.float32).to(device)
    loss_fn = FocalLoss(alpha=w, gamma=1.5)

    head_params = list(model.head.parameters())
    enc_params  = [p for p in model.encoder.parameters() if p.requires_grad]
    param_groups = [{"params": head_params, "lr": args.lr_head}]
    if enc_params:
        param_groups.append({"params": enc_params, "lr": args.lr_encoder})
    opt = torch.optim.AdamW(param_groups, weight_decay=1e-4)

    try:
        from torch.amp import GradScaler, autocast as amp_autocast
        scaler = GradScaler("cuda", enabled=(device=="cuda" and args.amp))
        autocast_ctx = amp_autocast("cuda") if (device=="cuda" and args.amp) else nullcontext()
    except Exception:
        from torch.cuda.amp import GradScaler, autocast as amp_autocast
        scaler = GradScaler(enabled=(device=="cuda" and args.amp))
        autocast_ctx = amp_autocast() if (device=="cuda" and args.amp) else nullcontext()

    best=-1.0; patience=0
    Path(args.out).parent.mkdir(parents=True, exist_ok=True)
    with open(args.out.replace(".pth",".json"), "w", encoding="utf-8") as f:
        json.dump({"encoder": args.encoder, "unfreeze_last": args.unfreeze_last}, f)

    for epoch in range(args.epochs):
        tr_loss, tr_acc = train_one_epoch(model, dl_tr, device, opt, scaler, autocast_ctx, loss_fn, args.grad_accum)
        va_loss, va_acc = evaluate(model, dl_va, device, loss_fn)
        print(f"epoch {epoch+1:02d}/{args.epochs} | train {tr_loss:.3f}/{tr_acc:.3f} | val {va_loss:.3f}/{va_acc:.3f}")
        torch.save(model.state_dict(), args.out.replace(".pth",".last.pth"))
        if va_acc > best + 1e-4:
            best = va_acc; patience=0
            torch.save(model.state_dict(), args.out)
            print(f"✅ Saved best to {args.out} (val_acc={best:.3f})")
        else:
            patience += 1
            if args.early_stop>0 and patience>=args.early_stop:
                print(f"⏹️ Early stopping at epoch {epoch+1} (best={best:.3f})")
                break
    print("Done.")

if __name__ == "__main__":
    ap = argparse.ArgumentParser(description="Train Wav2Vec2-based AI Voice Detector (balanced)")
    ap.add_argument("--data_dir", required=True, help="Folder with human/ and ai/ WAVs")
    ap.add_argument("--out", default="app/models/weights/wav2vec2_classifier.pth")
    ap.add_argument("--encoder", default="facebook/wav2vec2-base")
    ap.add_argument("--unfreeze_last", type=int, default=0)
    ap.add_argument("--epochs", type=int, default=8)
    ap.add_argument("--batch_size", type=int, default=16)
    ap.add_argument("--grad_accum", type=int, default=2)
    ap.add_argument("--lr_head", type=float, default=1e-3)
    ap.add_argument("--lr_encoder", type=float, default=1e-5)
    ap.add_argument("--val_ratio", type=float, default=0.15)
    ap.add_argument("--clip_seconds", type=float, default=3.0)
    ap.add_argument("--workers", type=int, default=-1)
    ap.add_argument("--amp", action="store_true", default=True)
    ap.add_argument("--cpu", action="store_true")
    ap.add_argument("--dropout", type=float, default=0.2)
    ap.add_argument("--hidden", type=int, default=256)
    ap.add_argument("--early_stop", type=int, default=0)
    ap.add_argument("--seed", type=int, default=42)
    args = ap.parse_args()
    main(args)