Spaces:
Sleeping
Sleeping
File size: 9,985 Bytes
e2c61ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os, json, argparse, random
from pathlib import Path
from contextlib import nullcontext
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler
try:
from .models.wav2vec_detector import Wav2VecClassifier
from .utils.audio import load_audio, pad_or_trim, TARGET_SR
except ImportError:
from app.models.wav2vec_detector import Wav2VecClassifier
from app.utils.audio import load_audio, pad_or_trim, TARGET_SR
from audiomentations import Compose, AddGaussianNoise, BandPassFilter
def make_gain(min_db, max_db, p):
from audiomentations import Gain as _Gain
try: return _Gain(min_gain_in_db=min_db, max_gain_in_db=max_db, p=p)
except TypeError: return _Gain(min_gain_db=min_db, max_gain_db=max_db, p=p)
def set_seed(s=42):
random.seed(s); np.random.seed(s); torch.manual_seed(s); torch.cuda.manual_seed_all(s)
def peak_normalize(y: np.ndarray, peak: float = 0.95, eps: float = 1e-9) -> np.ndarray:
m = float(np.max(np.abs(y)) + eps)
return (y / m) * peak if m > 0 else y
def trim_silence(y: np.ndarray, sr: int, thresh_db: float = 40.0, min_ms: int = 30) -> np.ndarray:
if y.size == 0: return y
win = max(1, int(sr * 0.02)); pad = max(1, int(sr * (min_ms / 1000.0)))
energy = np.convolve(y**2, np.ones(win)/win, mode="same")
ref = np.max(energy) + 1e-12
mask = 10*np.log10(energy/ref + 1e-12) > -thresh_db
if not np.any(mask): return y
idx = np.where(mask)[0]; start=max(0,int(idx[0]-pad)); end=min(len(y),int(idx[-1]+pad))
return y[start:end]
class WavDataset(Dataset):
"""data_dir/{human,ai}/*.wav"""
def __init__(self, root, split="train", val_ratio=0.15, seed=42, clip_seconds=3.0):
self.root = Path(root); self.clip = float(clip_seconds)
human = sorted((self.root/"human").glob("*.wav"))
ai = sorted((self.root/"ai").glob("*.wav"))
items = [(p,0) for p in human] + [(p,1) for p in ai]
rng = random.Random(seed); rng.shuffle(items)
n_val = int(len(items)*val_ratio)
self.items = items[n_val:] if split=="train" else items[:n_val]
self.is_train = split=="train"
self.nh = sum(1 for _,y in self.items if y==0)
self.na = sum(1 for _,y in self.items if y==1)
self.aug_h = Compose([AddGaussianNoise(0.001,0.01,p=0.3), make_gain(-4,4,p=0.3)])
self.aug_a = Compose([BandPassFilter(200.0,3500.0,p=0.5), AddGaussianNoise(0.001,0.01,p=0.3), make_gain(-6,6,p=0.3)])
def __len__(self): return len(self.items)
def __getitem__(self, idx):
path, label = self.items[idx]
y, sr = load_audio(str(path), TARGET_SR)
y = trim_silence(y, sr, 40.0, 30)
y = peak_normalize(y, 0.95)
y = pad_or_trim(y, duration_s=self.clip, sr=sr)
if self.is_train:
y = (self.aug_a if label==1 else self.aug_h)(samples=y, sample_rate=sr)
return torch.from_numpy(y).float(), torch.tensor(label, dtype=torch.long)
def make_loaders(args):
ds_tr = WavDataset(args.data_dir, "train", args.val_ratio, args.seed, args.clip_seconds)
ds_va = WavDataset(args.data_dir, "val", args.val_ratio, args.seed, args.clip_seconds)
# Weighted sampler to balance classes
labels = [y for _, y in ds_tr.items]
n0 = max(1, labels.count(0)); n1 = max(1, labels.count(1))
w0 = (n0 + n1) / (2 * n0); w1 = (n0 + n1) / (2 * n1)
sample_weights = [w0 if y == 0 else w1 for y in labels]
sampler = WeightedRandomSampler(sample_weights, num_samples=len(labels), replacement=True)
workers = args.workers if args.workers >= 0 else (0 if os.name=="nt" else max(1,(os.cpu_count() or 4)//2))
pin = (not args.cpu) and torch.cuda.is_available()
dl_tr = DataLoader(ds_tr, batch_size=args.batch_size, sampler=sampler,
num_workers=workers, pin_memory=pin, drop_last=True)
dl_va = DataLoader(ds_va, batch_size=max(1,args.batch_size//2), shuffle=False,
num_workers=workers, pin_memory=pin)
return ds_tr, ds_va, dl_tr, dl_va
class FocalLoss(torch.nn.Module):
def __init__(self, alpha=None, gamma=1.5):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.ce = torch.nn.CrossEntropyLoss(weight=alpha)
def forward(self, logits, target):
ce = self.ce(logits, target)
with torch.no_grad():
pt = torch.exp(-ce)
return ((1 - pt) ** self.gamma) * ce
def train_one_epoch(model, dl, device, opt, scaler, autocast_ctx, loss_fn, grad_accum=1):
model.train(); total=0.0; correct=0; seen=0
opt.zero_grad(set_to_none=True)
for step,(x,y) in enumerate(dl):
x=x.to(device,non_blocking=True); y=y.to(device,non_blocking=True)
with autocast_ctx:
logits,_=model(x); loss=loss_fn(logits,y)
loss=loss/grad_accum
if getattr(scaler,"is_enabled",lambda:False)(): scaler.scale(loss).backward()
else: loss.backward()
if (step+1)%grad_accum==0:
if getattr(scaler,"is_enabled",lambda:False)():
scaler.step(opt); scaler.update()
else:
opt.step()
opt.zero_grad(set_to_none=True)
total += float(loss) * x.size(0) * grad_accum
correct += int((logits.argmax(1)==y).sum().item()); seen += x.size(0)
return total/max(seen,1), correct/max(seen,1)
@torch.no_grad()
def evaluate(model, dl, device, loss_fn):
model.eval(); total=0.0; correct=0; seen=0
for x,y in dl:
x=x.to(device,non_blocking=True); y=y.to(device,non_blocking=True)
logits,_=model(x); loss=loss_fn(logits,y)
total += float(loss) * x.size(0); correct += int((logits.argmax(1)==y).sum().item()); seen += x.size(0)
return total/max(seen,1), correct/max(seen,1)
def main(args):
set_seed(args.seed)
device = "cuda" if (torch.cuda.is_available() and not args.cpu) else "cpu"
cudnn.benchmark = True
ds_tr, ds_va, dl_tr, dl_va = make_loaders(args)
print(f"Train items: {len(ds_tr)} (human={ds_tr.nh}, ai={ds_tr.na})")
print(f"Val items: {len(ds_va)}")
model = Wav2VecClassifier(
encoder=args.encoder,
unfreeze_last=args.unfreeze_last,
dropout=args.dropout,
hidden=args.hidden
).to(device)
# Focal loss with class weights
nh, na = ds_tr.nh, ds_tr.na
w = torch.tensor([(nh+na)/(2*nh+1e-6), (nh+na)/(2*na+1e-6)], dtype=torch.float32).to(device)
loss_fn = FocalLoss(alpha=w, gamma=1.5)
head_params = list(model.head.parameters())
enc_params = [p for p in model.encoder.parameters() if p.requires_grad]
param_groups = [{"params": head_params, "lr": args.lr_head}]
if enc_params:
param_groups.append({"params": enc_params, "lr": args.lr_encoder})
opt = torch.optim.AdamW(param_groups, weight_decay=1e-4)
try:
from torch.amp import GradScaler, autocast as amp_autocast
scaler = GradScaler("cuda", enabled=(device=="cuda" and args.amp))
autocast_ctx = amp_autocast("cuda") if (device=="cuda" and args.amp) else nullcontext()
except Exception:
from torch.cuda.amp import GradScaler, autocast as amp_autocast
scaler = GradScaler(enabled=(device=="cuda" and args.amp))
autocast_ctx = amp_autocast() if (device=="cuda" and args.amp) else nullcontext()
best=-1.0; patience=0
Path(args.out).parent.mkdir(parents=True, exist_ok=True)
with open(args.out.replace(".pth",".json"), "w", encoding="utf-8") as f:
json.dump({"encoder": args.encoder, "unfreeze_last": args.unfreeze_last}, f)
for epoch in range(args.epochs):
tr_loss, tr_acc = train_one_epoch(model, dl_tr, device, opt, scaler, autocast_ctx, loss_fn, args.grad_accum)
va_loss, va_acc = evaluate(model, dl_va, device, loss_fn)
print(f"epoch {epoch+1:02d}/{args.epochs} | train {tr_loss:.3f}/{tr_acc:.3f} | val {va_loss:.3f}/{va_acc:.3f}")
torch.save(model.state_dict(), args.out.replace(".pth",".last.pth"))
if va_acc > best + 1e-4:
best = va_acc; patience=0
torch.save(model.state_dict(), args.out)
print(f"✅ Saved best to {args.out} (val_acc={best:.3f})")
else:
patience += 1
if args.early_stop>0 and patience>=args.early_stop:
print(f"⏹️ Early stopping at epoch {epoch+1} (best={best:.3f})")
break
print("Done.")
if __name__ == "__main__":
ap = argparse.ArgumentParser(description="Train Wav2Vec2-based AI Voice Detector (balanced)")
ap.add_argument("--data_dir", required=True, help="Folder with human/ and ai/ WAVs")
ap.add_argument("--out", default="app/models/weights/wav2vec2_classifier.pth")
ap.add_argument("--encoder", default="facebook/wav2vec2-base")
ap.add_argument("--unfreeze_last", type=int, default=0)
ap.add_argument("--epochs", type=int, default=8)
ap.add_argument("--batch_size", type=int, default=16)
ap.add_argument("--grad_accum", type=int, default=2)
ap.add_argument("--lr_head", type=float, default=1e-3)
ap.add_argument("--lr_encoder", type=float, default=1e-5)
ap.add_argument("--val_ratio", type=float, default=0.15)
ap.add_argument("--clip_seconds", type=float, default=3.0)
ap.add_argument("--workers", type=int, default=-1)
ap.add_argument("--amp", action="store_true", default=True)
ap.add_argument("--cpu", action="store_true")
ap.add_argument("--dropout", type=float, default=0.2)
ap.add_argument("--hidden", type=int, default=256)
ap.add_argument("--early_stop", type=int, default=0)
ap.add_argument("--seed", type=int, default=42)
args = ap.parse_args()
main(args) |