File size: 8,896 Bytes
e2c61ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os, json
import numpy as np
import torch
import torch.nn.functional as F

from .models.wav2vec_detector import Wav2VecClassifier
from .utils.audio import load_audio, pad_or_trim, TARGET_SR

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# ---------- Thresholds & biases ----------
AI_THRESHOLD_DEFAULT = float(os.getenv("DETECTOR_AI_THRESHOLD", "0.60"))
MIC_THRESHOLD        = float(os.getenv("DETECTOR_MIC_THRESHOLD", "0.68"))
UPLOAD_THRESHOLD     = float(os.getenv("DETECTOR_UPLOAD_THRESHOLD", str(AI_THRESHOLD_DEFAULT)))
AI_LOGIT_BIAS        = float(os.getenv("DETECTOR_AI_LOGIT_BIAS", "0.00"))  # add to AI logit globally

# ---------- Decision rule ----------
# 'threshold'  -> AI if ai_prob >= threshold
# 'argmax'     -> AI if ai_prob > human_prob
# 'hybrid'     -> threshold, but if replay_score >= T1 and ai_prob >= 0.50 -> AI
DECISION_RULE       = os.getenv("DECISION_RULE", "threshold").lower()

# ---------- Replay-attack heuristic ----------
REPLAY_ENABLE       = os.getenv("REPLAY_ENABLE", "1") != "0"
REPLAY_AI_BONUS     = float(os.getenv("REPLAY_AI_BONUS", "1.2"))
REPLAY_FORCE_LABEL  = os.getenv("REPLAY_FORCE_LABEL", "0") == "1"
REPLAY_T1           = float(os.getenv("REPLAY_T1", "0.35"))  # soft start
REPLAY_T2           = float(os.getenv("REPLAY_T2", "0.55"))  # strong replay

# ---------- DSP helpers ----------
def peak_normalize(y: np.ndarray, peak: float = 0.95, eps: float = 1e-9) -> np.ndarray:
    m = float(np.max(np.abs(y)) + eps)
    return (y / m) * peak if m > 0 else y

def rms_normalize(y: np.ndarray, target_rms: float = 0.03, eps: float = 1e-9) -> np.ndarray:
    rms = float(np.sqrt(np.mean(y**2)) + eps)
    g = target_rms / rms
    return np.clip(y * g, -1.0, 1.0)

def trim_silence(y: np.ndarray, sr: int, thresh_db: float = 40.0, min_ms: int = 30) -> np.ndarray:
    if y.size == 0: return y
    win = max(1, int(sr * 0.02))
    pad = max(1, int(sr * (min_ms / 1000.0)))
    energy = np.convolve(y ** 2, np.ones(win) / win, mode="same")
    ref = np.max(energy) + 1e-12
    mask = 10.0 * np.log10(energy / ref + 1e-12) > -thresh_db
    if not np.any(mask): return y
    idx = np.where(mask)[0]
    start = max(0, int(idx[0] - pad))
    end = min(len(y), int(idx[-1] + pad))
    return y[start:end]

def noise_gate(y, sr, gate_db=-42.0):
    m = np.max(np.abs(y)) + 1e-9
    thr = m * (10.0 ** (gate_db / 20.0))
    y2 = y.copy()
    y2[np.abs(y2) < thr] = 0.0
    return y2

def bandpass_fft(y: np.ndarray, sr: int, low=100.0, high=3800.0):
    n = int(2 ** np.ceil(np.log2(len(y) + 1)))
    Y = np.fft.rfft(y, n=n)
    freqs = np.fft.rfftfreq(n, d=1.0/sr)
    mask = (freqs >= low) & (freqs <= high)
    Y_filtered = Y * mask
    y_filt = np.fft.irfft(Y_filtered, n=n)[:len(y)]
    return y_filt.astype(np.float32, copy=False)

# ---------- Replay score ----------
def replay_score(y: np.ndarray, sr: int) -> float:
    if len(y) < sr:
        y = np.pad(y, (0, sr - len(y)))
    N = 4096
    if len(y) < N:
        y = np.pad(y, (0, N - len(y)))
    w = np.hanning(N)
    seg = y[:N] * w
    X = np.abs(np.fft.rfft(seg)) + 1e-9

    cep = np.fft.irfft(np.log(X))
    qmin = max(1, int(0.0003 * sr))
    qmax = min(len(cep) - 1, int(0.0040 * sr))
    cwin = np.abs(cep[qmin:qmax])
    c_peak = float(np.max(cwin)); c_mean = float(np.mean(cwin) + 1e-9)
    cep_score = np.clip((c_peak - c_mean) / (c_peak + c_mean), 0.0, 1.0)

    F = np.fft.rfftfreq(N, 1.0 / sr)
    total = float(np.sum(X))
    hf = float(np.sum(X[F >= 5000.0]))
    hf_ratio = hf / (total + 1e-9)
    hf_term = np.clip((0.25 - hf_ratio) / 0.25, 0.0, 1.0)

    return float(np.clip(0.6 * cep_score + 0.4 * hf_term, 0.0, 1.0))

# ---------- Detector ----------
class Detector:
    def __init__(self, weights_path: str, encoder: str | None = None, unfreeze_last: int = 0):
        cfg = None
        js = weights_path.replace(".pth", ".json")
        if os.path.exists(js):
            try:
                with open(js, "r", encoding="utf-8") as f:
                    cfg = json.load(f)
            except Exception:
                cfg = None
        enc = encoder or (cfg.get("encoder") if cfg else "facebook/wav2vec2-base")
        unf = unfreeze_last or int(cfg.get("unfreeze_last", 0)) if cfg else 0

        self.model = Wav2VecClassifier(encoder=enc, unfreeze_last=unf).to(DEVICE)
        if weights_path and os.path.exists(weights_path):
            state = torch.load(weights_path, map_location=DEVICE)
            self.model.load_state_dict(state, strict=False)
        self.model.eval()

    def _preprocess(self, y: np.ndarray, sr: int, source_hint: str | None):
        y = trim_silence(y, sr, 40.0, 30)
        y = bandpass_fft(y, sr, 100.0, 3800.0)
        if source_hint and source_hint.lower().startswith("micro"):
            y = noise_gate(y, sr, -42.0)
            y = rms_normalize(y, 0.035)
            y = peak_normalize(y, 0.95)
        else:
            y = rms_normalize(y, 0.03)
            y = peak_normalize(y, 0.95)
        y = pad_or_trim(y, duration_s=3.0, sr=sr)
        return y

    @torch.inference_mode()
    def predict_proba(self, wav_bytes_or_path, source_hint: str | None = None):
        y0, sr = load_audio(wav_bytes_or_path, target_sr=TARGET_SR)
        rscore = replay_score(y0, sr) if REPLAY_ENABLE else 0.0

        y = self._preprocess(y0, sr, source_hint)
        x = torch.from_numpy(y).float().unsqueeze(0).to(DEVICE)

        logits, _ = self.model(x)
        logits = logits.clone()
        logits[:, 1] += AI_LOGIT_BIAS

        # Replay bonus on AI logit
        if REPLAY_ENABLE and (source_hint and source_hint.lower().startswith("micro")) and (rscore >= REPLAY_T1):
            ramp = np.clip((rscore - REPLAY_T1) / max(REPLAY_T2 - REPLAY_T1, 1e-6), 0.0, 1.0)
            logits[:, 1] += REPLAY_AI_BONUS * ramp

        probs = F.softmax(logits, dim=-1).cpu().numpy()[0]
        p_h, p_ai = float(probs[0]), float(probs[1])

        thr_source = "mic" if (source_hint and source_hint.lower().startswith("micro")) else "upload"
        thr = MIC_THRESHOLD if thr_source == "mic" else UPLOAD_THRESHOLD

        # Labels by different rules
        label_thresh = "ai" if p_ai >= thr else "human"
        label_argmax = "ai" if p_ai > p_h else "human"
        label_hybrid = label_thresh
        if REPLAY_ENABLE and rscore >= REPLAY_T1 and p_ai >= 0.50:
            label_hybrid = "ai"
        if REPLAY_ENABLE and rscore >= REPLAY_T2 and (source_hint and source_hint.lower().startswith("micro")):
            if REPLAY_FORCE_LABEL or p_ai >= (thr - 0.05):
                label_hybrid = "ai"

        if DECISION_RULE == "argmax":
            label = label_argmax
            rule_used = "argmax"
        elif DECISION_RULE == "hybrid":
            label = label_hybrid
            rule_used = "hybrid(threshold+replay)"
        else:
            label = label_thresh
            rule_used = "threshold"

        return {
            "human": p_h,
            "ai": p_ai,
            "label": label,
            "threshold": float(thr),
            "threshold_source": thr_source,
            "backend": "wav2vec2",
            "source_hint": (source_hint or "auto"),
            "replay_score": float(rscore),
            "decision": rule_used,
            "decision_details": {
                "ai_prob": p_ai,
                "human_prob": p_h,
                "prob_margin": p_ai - p_h,
                "ai_vs_threshold_margin": p_ai - thr,
                "replay_score": rscore,
                "mic_threshold": MIC_THRESHOLD,
                "upload_threshold": UPLOAD_THRESHOLD,
                "force_label_AI": bool(REPLAY_FORCE_LABEL and rscore >= REPLAY_T2),
            },
        }

    def explain(self, wav_bytes_or_path, source_hint: str | None = None):
        self.model.eval()
        y0, sr = load_audio(wav_bytes_or_path, target_sr=TARGET_SR)
        y = self._preprocess(y0, sr, source_hint)
        x = torch.from_numpy(y).float().unsqueeze(0).to(DEVICE)
        x.requires_grad_(True)
        logits, feats = self.model(x)
        logits[:, 1].sum().backward(retain_graph=True)
        if feats.grad is None:
            s = x.grad.detach().abs().squeeze(0)
            s = s / (s.max() + 1e-6)
            H = 64
            step = max(1, s.numel() // 256)
            s_small = s[::step][:256].cpu().numpy()
            cam = np.tile(s_small[None, :], (H, 1))
        else:
            g = feats.grad.detach().abs().sum(dim=-1).squeeze(0)
            g = g / (g.max() + 1e-6)
            H = 64
            cam = np.tile(g.cpu().numpy()[None, :], (H, 1))
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
        return {"cam": cam.tolist(), "probs": None}