Spaces:
Sleeping
Sleeping
File size: 8,896 Bytes
e2c61ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os, json
import numpy as np
import torch
import torch.nn.functional as F
from .models.wav2vec_detector import Wav2VecClassifier
from .utils.audio import load_audio, pad_or_trim, TARGET_SR
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# ---------- Thresholds & biases ----------
AI_THRESHOLD_DEFAULT = float(os.getenv("DETECTOR_AI_THRESHOLD", "0.60"))
MIC_THRESHOLD = float(os.getenv("DETECTOR_MIC_THRESHOLD", "0.68"))
UPLOAD_THRESHOLD = float(os.getenv("DETECTOR_UPLOAD_THRESHOLD", str(AI_THRESHOLD_DEFAULT)))
AI_LOGIT_BIAS = float(os.getenv("DETECTOR_AI_LOGIT_BIAS", "0.00")) # add to AI logit globally
# ---------- Decision rule ----------
# 'threshold' -> AI if ai_prob >= threshold
# 'argmax' -> AI if ai_prob > human_prob
# 'hybrid' -> threshold, but if replay_score >= T1 and ai_prob >= 0.50 -> AI
DECISION_RULE = os.getenv("DECISION_RULE", "threshold").lower()
# ---------- Replay-attack heuristic ----------
REPLAY_ENABLE = os.getenv("REPLAY_ENABLE", "1") != "0"
REPLAY_AI_BONUS = float(os.getenv("REPLAY_AI_BONUS", "1.2"))
REPLAY_FORCE_LABEL = os.getenv("REPLAY_FORCE_LABEL", "0") == "1"
REPLAY_T1 = float(os.getenv("REPLAY_T1", "0.35")) # soft start
REPLAY_T2 = float(os.getenv("REPLAY_T2", "0.55")) # strong replay
# ---------- DSP helpers ----------
def peak_normalize(y: np.ndarray, peak: float = 0.95, eps: float = 1e-9) -> np.ndarray:
m = float(np.max(np.abs(y)) + eps)
return (y / m) * peak if m > 0 else y
def rms_normalize(y: np.ndarray, target_rms: float = 0.03, eps: float = 1e-9) -> np.ndarray:
rms = float(np.sqrt(np.mean(y**2)) + eps)
g = target_rms / rms
return np.clip(y * g, -1.0, 1.0)
def trim_silence(y: np.ndarray, sr: int, thresh_db: float = 40.0, min_ms: int = 30) -> np.ndarray:
if y.size == 0: return y
win = max(1, int(sr * 0.02))
pad = max(1, int(sr * (min_ms / 1000.0)))
energy = np.convolve(y ** 2, np.ones(win) / win, mode="same")
ref = np.max(energy) + 1e-12
mask = 10.0 * np.log10(energy / ref + 1e-12) > -thresh_db
if not np.any(mask): return y
idx = np.where(mask)[0]
start = max(0, int(idx[0] - pad))
end = min(len(y), int(idx[-1] + pad))
return y[start:end]
def noise_gate(y, sr, gate_db=-42.0):
m = np.max(np.abs(y)) + 1e-9
thr = m * (10.0 ** (gate_db / 20.0))
y2 = y.copy()
y2[np.abs(y2) < thr] = 0.0
return y2
def bandpass_fft(y: np.ndarray, sr: int, low=100.0, high=3800.0):
n = int(2 ** np.ceil(np.log2(len(y) + 1)))
Y = np.fft.rfft(y, n=n)
freqs = np.fft.rfftfreq(n, d=1.0/sr)
mask = (freqs >= low) & (freqs <= high)
Y_filtered = Y * mask
y_filt = np.fft.irfft(Y_filtered, n=n)[:len(y)]
return y_filt.astype(np.float32, copy=False)
# ---------- Replay score ----------
def replay_score(y: np.ndarray, sr: int) -> float:
if len(y) < sr:
y = np.pad(y, (0, sr - len(y)))
N = 4096
if len(y) < N:
y = np.pad(y, (0, N - len(y)))
w = np.hanning(N)
seg = y[:N] * w
X = np.abs(np.fft.rfft(seg)) + 1e-9
cep = np.fft.irfft(np.log(X))
qmin = max(1, int(0.0003 * sr))
qmax = min(len(cep) - 1, int(0.0040 * sr))
cwin = np.abs(cep[qmin:qmax])
c_peak = float(np.max(cwin)); c_mean = float(np.mean(cwin) + 1e-9)
cep_score = np.clip((c_peak - c_mean) / (c_peak + c_mean), 0.0, 1.0)
F = np.fft.rfftfreq(N, 1.0 / sr)
total = float(np.sum(X))
hf = float(np.sum(X[F >= 5000.0]))
hf_ratio = hf / (total + 1e-9)
hf_term = np.clip((0.25 - hf_ratio) / 0.25, 0.0, 1.0)
return float(np.clip(0.6 * cep_score + 0.4 * hf_term, 0.0, 1.0))
# ---------- Detector ----------
class Detector:
def __init__(self, weights_path: str, encoder: str | None = None, unfreeze_last: int = 0):
cfg = None
js = weights_path.replace(".pth", ".json")
if os.path.exists(js):
try:
with open(js, "r", encoding="utf-8") as f:
cfg = json.load(f)
except Exception:
cfg = None
enc = encoder or (cfg.get("encoder") if cfg else "facebook/wav2vec2-base")
unf = unfreeze_last or int(cfg.get("unfreeze_last", 0)) if cfg else 0
self.model = Wav2VecClassifier(encoder=enc, unfreeze_last=unf).to(DEVICE)
if weights_path and os.path.exists(weights_path):
state = torch.load(weights_path, map_location=DEVICE)
self.model.load_state_dict(state, strict=False)
self.model.eval()
def _preprocess(self, y: np.ndarray, sr: int, source_hint: str | None):
y = trim_silence(y, sr, 40.0, 30)
y = bandpass_fft(y, sr, 100.0, 3800.0)
if source_hint and source_hint.lower().startswith("micro"):
y = noise_gate(y, sr, -42.0)
y = rms_normalize(y, 0.035)
y = peak_normalize(y, 0.95)
else:
y = rms_normalize(y, 0.03)
y = peak_normalize(y, 0.95)
y = pad_or_trim(y, duration_s=3.0, sr=sr)
return y
@torch.inference_mode()
def predict_proba(self, wav_bytes_or_path, source_hint: str | None = None):
y0, sr = load_audio(wav_bytes_or_path, target_sr=TARGET_SR)
rscore = replay_score(y0, sr) if REPLAY_ENABLE else 0.0
y = self._preprocess(y0, sr, source_hint)
x = torch.from_numpy(y).float().unsqueeze(0).to(DEVICE)
logits, _ = self.model(x)
logits = logits.clone()
logits[:, 1] += AI_LOGIT_BIAS
# Replay bonus on AI logit
if REPLAY_ENABLE and (source_hint and source_hint.lower().startswith("micro")) and (rscore >= REPLAY_T1):
ramp = np.clip((rscore - REPLAY_T1) / max(REPLAY_T2 - REPLAY_T1, 1e-6), 0.0, 1.0)
logits[:, 1] += REPLAY_AI_BONUS * ramp
probs = F.softmax(logits, dim=-1).cpu().numpy()[0]
p_h, p_ai = float(probs[0]), float(probs[1])
thr_source = "mic" if (source_hint and source_hint.lower().startswith("micro")) else "upload"
thr = MIC_THRESHOLD if thr_source == "mic" else UPLOAD_THRESHOLD
# Labels by different rules
label_thresh = "ai" if p_ai >= thr else "human"
label_argmax = "ai" if p_ai > p_h else "human"
label_hybrid = label_thresh
if REPLAY_ENABLE and rscore >= REPLAY_T1 and p_ai >= 0.50:
label_hybrid = "ai"
if REPLAY_ENABLE and rscore >= REPLAY_T2 and (source_hint and source_hint.lower().startswith("micro")):
if REPLAY_FORCE_LABEL or p_ai >= (thr - 0.05):
label_hybrid = "ai"
if DECISION_RULE == "argmax":
label = label_argmax
rule_used = "argmax"
elif DECISION_RULE == "hybrid":
label = label_hybrid
rule_used = "hybrid(threshold+replay)"
else:
label = label_thresh
rule_used = "threshold"
return {
"human": p_h,
"ai": p_ai,
"label": label,
"threshold": float(thr),
"threshold_source": thr_source,
"backend": "wav2vec2",
"source_hint": (source_hint or "auto"),
"replay_score": float(rscore),
"decision": rule_used,
"decision_details": {
"ai_prob": p_ai,
"human_prob": p_h,
"prob_margin": p_ai - p_h,
"ai_vs_threshold_margin": p_ai - thr,
"replay_score": rscore,
"mic_threshold": MIC_THRESHOLD,
"upload_threshold": UPLOAD_THRESHOLD,
"force_label_AI": bool(REPLAY_FORCE_LABEL and rscore >= REPLAY_T2),
},
}
def explain(self, wav_bytes_or_path, source_hint: str | None = None):
self.model.eval()
y0, sr = load_audio(wav_bytes_or_path, target_sr=TARGET_SR)
y = self._preprocess(y0, sr, source_hint)
x = torch.from_numpy(y).float().unsqueeze(0).to(DEVICE)
x.requires_grad_(True)
logits, feats = self.model(x)
logits[:, 1].sum().backward(retain_graph=True)
if feats.grad is None:
s = x.grad.detach().abs().squeeze(0)
s = s / (s.max() + 1e-6)
H = 64
step = max(1, s.numel() // 256)
s_small = s[::step][:256].cpu().numpy()
cam = np.tile(s_small[None, :], (H, 1))
else:
g = feats.grad.detach().abs().sum(dim=-1).squeeze(0)
g = g / (g.max() + 1e-6)
H = 64
cam = np.tile(g.cpu().numpy()[None, :], (H, 1))
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
return {"cam": cam.tolist(), "probs": None} |