Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +145 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import pinecone
|
| 4 |
+
import torch
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import openai
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# connect to pinecone environment
|
| 12 |
+
pinecone.init(
|
| 13 |
+
api_key="d4f20339-fcc1-4a11-b04f-3800203eacd2",
|
| 14 |
+
environment="us-east1-gcp"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
index_name = "abstractive-question-answering"
|
| 18 |
+
|
| 19 |
+
index = pinecone.Index(index_name)
|
| 20 |
+
|
| 21 |
+
# Initialize models from HuggingFace
|
| 22 |
+
|
| 23 |
+
@st.cache_resource
|
| 24 |
+
def get_t5_model():
|
| 25 |
+
return pipeline("summarization", model="t5-base", tokenizer="t5-base")
|
| 26 |
+
|
| 27 |
+
@st.cache_resource
|
| 28 |
+
def get_flan_t5_model():
|
| 29 |
+
return pipeline("summarization", model="google/flan-t5-base", tokenizer="google/flan-t5-base")
|
| 30 |
+
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def get_embedding_model():
|
| 33 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 34 |
+
model = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device)
|
| 35 |
+
model.max_seq_length = 512
|
| 36 |
+
return model
|
| 37 |
+
|
| 38 |
+
@st.cache_data()
|
| 39 |
+
def save_key(api_key):
|
| 40 |
+
return api_key
|
| 41 |
+
|
| 42 |
+
retriever_model = get_embedding_model()
|
| 43 |
+
|
| 44 |
+
def query_pinecone(query, top_k, model):
|
| 45 |
+
# generate embeddings for the query
|
| 46 |
+
xq = model.encode([query]).tolist()
|
| 47 |
+
# search pinecone index for context passage with the answer
|
| 48 |
+
xc = index.query(xq, top_k=top_k, include_metadata=True)
|
| 49 |
+
return xc
|
| 50 |
+
|
| 51 |
+
def format_query(query_results):
|
| 52 |
+
# extract passage_text from Pinecone search result
|
| 53 |
+
context = [result['metadata']['merged_text'] for result in query_results['matches']]
|
| 54 |
+
return context
|
| 55 |
+
|
| 56 |
+
def gpt3_summary(text):
|
| 57 |
+
response = openai.Completion.create(
|
| 58 |
+
model="text-davinci-003",
|
| 59 |
+
prompt=text+"\n\nTl;dr",
|
| 60 |
+
temperature=0.1,
|
| 61 |
+
max_tokens=512,
|
| 62 |
+
top_p=1.0,
|
| 63 |
+
frequency_penalty=0.0,
|
| 64 |
+
presence_penalty=1
|
| 65 |
+
)
|
| 66 |
+
return response.choices[0].text
|
| 67 |
+
|
| 68 |
+
def gpt3_qa(query, answer):
|
| 69 |
+
response = openai.Completion.create(
|
| 70 |
+
model="text-davinci-003",
|
| 71 |
+
prompt="Q: " + query + "\nA: " + answer,
|
| 72 |
+
temperature=0,
|
| 73 |
+
max_tokens=512,
|
| 74 |
+
top_p=1,
|
| 75 |
+
frequency_penalty=0.0,
|
| 76 |
+
presence_penalty=0.0,
|
| 77 |
+
stop=["\n"]
|
| 78 |
+
)
|
| 79 |
+
return response.choices[0].text
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
st.title("Abstractive Question Answering - APPL")
|
| 83 |
+
|
| 84 |
+
query_text = st.text_input("Input Query", value="Who is the CEO of Apple?")
|
| 85 |
+
|
| 86 |
+
num_results = int(st.number_input("Number of Results to query", 1, 5, value=2))
|
| 87 |
+
|
| 88 |
+
query_results = query_pinecone(query_text, num_results, retriever_model)
|
| 89 |
+
|
| 90 |
+
context_list = format_query(query_results)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# Choose decoder model
|
| 95 |
+
|
| 96 |
+
models_choice = ["GPT3 (text_davinci)", "GPT3 - QA", "T5", "FLAN-T5"]
|
| 97 |
+
|
| 98 |
+
decoder_model = st.selectbox(
|
| 99 |
+
'Select Decoder Model',
|
| 100 |
+
models_choice)
|
| 101 |
+
|
| 102 |
+
st.subheader("Answer:")
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
if decoder_model == "GPT3 (text_davinci)":
|
| 106 |
+
openai_key = st.text_input("Enter OpenAI key")
|
| 107 |
+
api_key = save_key(openai_key)
|
| 108 |
+
openai.api_key = api_key
|
| 109 |
+
output_text = []
|
| 110 |
+
for context_text in context_list:
|
| 111 |
+
output_text.append(gpt3_summary(context_text))
|
| 112 |
+
generated_text = " ".join(output_text)
|
| 113 |
+
st.write(gpt3_summary(generated_text))
|
| 114 |
+
|
| 115 |
+
elif decoder_model=="GPT3 - QA":
|
| 116 |
+
openai_key = st.text_input("Enter OpenAI key")
|
| 117 |
+
api_key = save_key(openai_key)
|
| 118 |
+
openai.api_key = api_key
|
| 119 |
+
output_text = []
|
| 120 |
+
for context_text in context_list:
|
| 121 |
+
output_text.append(gpt3_qa(query_text, context_text))
|
| 122 |
+
generated_text = " ".join(output_text)
|
| 123 |
+
st.write(gpt3_qa(query_text, generated_text))
|
| 124 |
+
|
| 125 |
+
elif decoder_model == "T5":
|
| 126 |
+
t5_pipeline = get_t5_model()
|
| 127 |
+
output_text = []
|
| 128 |
+
for context_text in context_list:
|
| 129 |
+
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
| 130 |
+
generated_text = " ".join(output_text)
|
| 131 |
+
st.write(t5_pipeline(generated_text)[0]["summary_text"])
|
| 132 |
+
|
| 133 |
+
elif decoder_model == "FLAN-T5":
|
| 134 |
+
flan_t5_pipeline = get_flan_t5_model()
|
| 135 |
+
output_text = []
|
| 136 |
+
for context_text in context_list:
|
| 137 |
+
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
| 138 |
+
generated_text = " ".join(output_text)
|
| 139 |
+
st.write(flan_t5_pipeline(generated_text)[0]["summary_text"])
|
| 140 |
+
|
| 141 |
+
st.subheader("Retrieved Text:")
|
| 142 |
+
|
| 143 |
+
for context_text in context_list:
|
| 144 |
+
st.markdown(f"- {context_text}")
|
| 145 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
pinecone-client
|
| 3 |
+
sentence-transformers
|
| 4 |
+
torch
|
| 5 |
+
tqdm
|
| 6 |
+
openai
|