File size: 8,615 Bytes
343b03a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
document.addEventListener('DOMContentLoaded', () => {
    const questions = [
        {
            question: "What is the primary goal of Intern-S1 as described in the abstract?",
            options: [
                "To create a general-purpose language model for everyday tasks",
                "To develop a specialized multimodal model for scientific research with expertise in analyzing multiple science modalities",
                "To compete with closed-source models only in mathematical problem-solving",
                "To build a vision-language model focused on natural images"
            ],
            correct: 1
        },
        {
            question: "How many activated parameters and total parameters does Intern-S1 have?",
            options: [
                "14 billion activated, 120 billion total",
                "28 billion activated, 241 billion total",
                "56 billion activated, 482 billion total",
                "10 billion activated, 80 billion total"
            ],
            correct: 1
        },
        {
            question: "What percentage of the 5T training tokens came from scientific domains?",
            options: [
                "25%",
                "50%",
                "75%",
                "Over 50% (specifically >2.5T tokens)"
            ],
            correct: 3
        },
        {
            question: "What innovative technique did Intern-S1 use during its post-training reinforcement learning phase?",
            options: [
                "Mixture-of-Losses (MoL)",
                "Mixture-of-Rewards (MoR)",
                "Dynamic Reward Shaping (DRS)",
                "Multi-task Gradient Aggregation (MGA)"
            ],
            correct: 1
        },
        {
            question: "Which of the following scientific tasks does the paper claim Intern-S1 surpasses closed-source state-of-the-art models in?",
            options: [
                "Image captioning and object detection",
                "Molecular synthesis planning, reaction condition prediction, predicting thermodynamic stabilities for crystals",
                "Real-time video translation and voice cloning",
                "Web navigation and e-commerce recommendation"
            ],
            correct: 1
        },
        {
            question: "According to the introduction, why is scientific research considered important for AGI development?",
            options: [
                "Because it requires large amounts of labeled data",
                "Because it drives fundamental breakthroughs in human society and demands rigorous reasoning across diverse scientific modalities",
                "Because it relies heavily on social media data",
                "Because it can be solved with simple rule-based systems"
            ],
            correct: 1
        },
        {
            question: "What type of model is Intern-S1 described as?",
            options: [
                "A unimodal transformer model",
                "A multimodal Mixture-of-Experts (MoE) model",
                "A convolutional neural network for image classification",
                "A recurrent neural network for time-series analysis"
            ],
            correct: 1
        },
        {
            question: "What is the key limitation of current open-source models in scientific domains, according to the paper?",
            options: [
                "They are too slow to train",
                "They lack sufficient computational resources",
                "Their progress lags significantly behind popular domains like math and code, and there's a substantial gap compared to closed-source models",
                "They don't support English"
            ],
            correct: 2
        },
        {
            question: "Which of these benchmarks is mentioned as part of the scientific evaluation suite for Intern-S1?",
            options: [
                "COCO and ImageNet",
                "SmolInstruct, ChemBench, MatBench, SFE, Physics",
                "GLUE and SuperGLUE",
                "MNIST and CIFAR-10"
            ],
            correct: 1
        },
        {
            question: "Where can the Intern-S1 models be accessed?",
            options: [
                "GitHub.com/intern-s1",
                "Hugging Face at https://huggingface.co/internlm/Intern-S1",
                "OpenAI's model zoo",
                "Google AI Hub"
            ],
            correct: 1
        }
    ];

    const questionDisplay = document.getElementById('question-display');
    const prevBtn = document.getElementById('prev-btn');
    const nextBtn = document.getElementById('next-btn');
    const submitBtn = document.getElementById('submit-btn');
    const resultsSection = document.getElementById('results');
    const scoreDisplay = document.getElementById('score-display');
    const feedbackDiv = document.getElementById('feedback');
    const restartBtn = document.getElementById('restart-btn');

    let currentQuestion = 0;
    let userAnswers = new Array(questions.length).fill(null);
    let quizCompleted = false;

    function renderQuestion() {
        const q = questions[currentQuestion];
        questionDisplay.innerHTML = `
            <div class="question">
                <h3>Question ${currentQuestion + 1} of ${questions.length}</h3>
                <p>${q.question}</p>
                <div class="options">
                    ${q.options.map((option, index) => `
                        <label class="option">
                            <input type="radio" name="answer" value="${index}" ${userAnswers[currentQuestion] === index ? 'checked' : ''}>
                            ${option}
                        </label>
                    `).join('')}
                </div>
            </div>
        `;

        // Update button states
        prevBtn.disabled = currentQuestion === 0;
        nextBtn.textContent = currentQuestion === questions.length - 1 ? 'Submit' : 'Next';
        submitBtn.style.display = 'none';

        // Add event listeners for answer selection
        const radios = document.querySelectorAll('input[name="answer"]');
        radios.forEach(radio => {
            radio.addEventListener('change', () => {
                userAnswers[currentQuestion] = parseInt(radio.value);
            });
        });
    }

    function showResults() {
        const correctCount = userAnswers.filter((answer, index) => answer === questions[index].correct).length;
        const scorePercentage = Math.round((correctCount / questions.length) * 100);

        scoreDisplay.innerHTML = `You scored ${correctCount} out of ${questions.length} (${scorePercentage}%)`;

        let feedbackHTML = '<h3>Feedback:</h3>';
        userAnswers.forEach((answer, index) => {
            if (answer === null) {
                feedbackHTML += `<p><strong>Q${index + 1}</strong>: Not answered</p>`;
            } else if (answer === questions[index].correct) {
                feedbackHTML += `<p><strong>Q${index + 1}</strong>: βœ… Correct!</p>`;
            } else {
                feedbackHTML += `<p><strong>Q${index + 1}</strong>: ❌ Incorrect. The correct answer was: "${questions[index].options[questions[index].correct]}"</p>`;
            }
        });

        feedbackDiv.innerHTML = feedbackHTML;
        resultsSection.style.display = 'block';
        questionDisplay.style.display = 'none';
        document.getElementById('controls').style.display = 'none';
    }

    nextBtn.addEventListener('click', () => {
        const selectedAnswer = document.querySelector('input[name="answer"]:checked');
        
        if (!selectedAnswer && !quizCompleted) {
            alert('Please select an answer before continuing.');
            return;
        }

        if (currentQuestion === questions.length - 1) {
            quizCompleted = true;
            showResults();
        } else {
            currentQuestion++;
            renderQuestion();
        }
    });

    prevBtn.addEventListener('click', () => {
        if (currentQuestion > 0) {
            currentQuestion--;
            renderQuestion();
        }
    });

    restartBtn.addEventListener('click', () => {
        currentQuestion = 0;
        userAnswers = new Array(questions.length).fill(null);
        quizCompleted = false;
        resultsSection.style.display = 'none';
        questionDisplay.style.display = 'block';
        document.getElementById('controls').style.display = 'flex';
        renderQuestion();
    });

    // Initialize
    renderQuestion();
});