Spaces:
Sleeping
Sleeping
File size: 6,412 Bytes
c3f0b92 ad7b882 c3f0b92 3777334 cfc9929 3777334 f868bba 3777334 b0d371d 3777334 b0d371d c3f0b92 b0d371d 3777334 b0d371d cfc9929 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 99712d5 c3f0b92 3777334 c3f0b92 3777334 99712d5 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 3777334 c12b487 3777334 c12b487 3777334 b0d371d ad7b882 3777334 c3f0b92 3777334 c12b487 c3f0b92 3777334 c3f0b92 3777334 c3f0b92 c12b487 c3f0b92 c12b487 c3f0b92 b0d371d d1c5b3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# app.py
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw
import cv2
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
# ---- Config ----
MODEL_ID = "SadraCoding/SDXL-Deepfake-Detector"
THRESHOLD = 0.65 # >= -> "Likely Manipulated"
IMAGE_SIZE = 224 # ViT input size
try:
import mediapipe as mp
_mp_face = mp.solutions.face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.4
)
except Exception:
_mp_face = None
# ---- Face crop ----
def crop_face(pil_img, pad=0.25):
"""
Crop the most prominent face using MediaPipe. If MP missing or no face found,
return the original image.
"""
if _mp_face is None:
return pil_img
img = np.array(pil_img.convert("RGB"))
h, w = img.shape[:2]
res = _mp_face.process(cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
if not res.detections:
return pil_img
det = max(
res.detections,
key=lambda d: d.location_data.relative_bounding_box.width
)
b = det.location_data.relative_bounding_box
x, y, bw, bh = b.xmin, b.ymin, b.width, b.height
x1 = int(max(0, (x - pad*bw) * w)); y1 = int(max(0, (y - pad*bh) * h))
x2 = int(min(w, (x + bw + pad*bw) * w)); y2 = int(min(h, (y + bh + pad*bh) * h))
face = Image.fromarray(img[y1:y2, x1:x2])
if face.size[0] < 20 or face.size[1] < 20:
return pil_img
return face
def face_oval_mask(img_pil, shrink=0.80):
w, h = img_pil.size
mask = Image.new("L", (w, h), 0)
draw = ImageDraw.Draw(mask)
dx, dy = int((1 - shrink) * w / 2), int((1 - shrink) * h / 2)
draw.ellipse((dx, dy, w - dx, h - dy), fill=255)
return np.array(mask, dtype=np.float32) / 255.0
# ---- HF model load ----
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
model.eval()
torch.set_grad_enabled(False)
# Resolve which index corresponds to "fake"
_FAKE_KEYS = ("artificial", "fake", "deepfake", "manipulated", "spoof", "forged")
def _fake_index_from_config(cfg) -> int | None:
# Prefer id2label
id2label = getattr(cfg, "id2label", None)
if id2label:
try:
normalized = {int(k): str(v).lower() for k, v in id2label.items()}
except Exception:
# sometimes keys already ints
normalized = {int(k): str(v).lower() for k, v in id2label.items()}
for idx, lab in normalized.items():
if any(k in lab for k in _FAKE_KEYS):
return idx
# Fallback: invert label2id
label2id = getattr(cfg, "label2id", None)
if label2id:
inv = {int(v): str(k).lower() for k, v in label2id.items()}
for idx, lab in inv.items():
if any(k in lab for k in _FAKE_KEYS):
return idx
return None
_FAKE_IDX = _fake_index_from_config(model.config)
# ---- Inference ----
def predict_fake_prob(pil_img: Image.Image) -> float:
"""
Returns P(fake) in [0,1].
Model labels per card: 0 -> 'artificial' (fake), 1 -> 'human' (real).
"""
# Face-focus to reduce background bias
face = crop_face(pil_img)
face = face.convert("RGB").resize((IMAGE_SIZE, IMAGE_SIZE))
inputs = processor(images=face, return_tensors="pt")
logits = model(**inputs).logits # (1, C)
if logits.shape[-1] == 1:
# Binary sigmoid head (unlikely for this model, but safe)
return torch.sigmoid(logits.squeeze(0))[0].item()
# Softmax multi-class (expected 2 classes)
probs = torch.softmax(logits.squeeze(0), dim=-1).detach().cpu().numpy()
# Use explicit mapping if available
if _FAKE_IDX is not None and 0 <= _FAKE_IDX < probs.shape[0]:
return float(probs[_FAKE_IDX])
# Known mapping from the model card: 0=artificial (fake), 1=human
if probs.shape[0] == 2:
return float(probs[0]) # class-0 is fake
# Last resort
return float(probs.max())
# ---- UI helpers ----
def result_card(prob_fake: float) -> str:
label = "Likely Manipulated" if prob_fake >= THRESHOLD else "Likely Authentic"
pct = prob_fake * 100.0
color = "#d84a4a" if label.startswith("Likely Manipulated") else "#2e7d32"
bar_bg = "#e9ecef"
return f"""
<div style="max-width:860px;margin:0 auto;">
<div style="border:1px solid #e5e7eb;border-radius:14px;padding:18px 20px;background:#fff;
box-shadow: 0 2px 10px rgba(16,24,40,.04);">
<div style="display:flex;justify-content:space-between;align-items:center;margin-bottom:10px;">
<div style="font-size:18px;color:#111827;font-weight:600;">Deepfake likelihood</div>
<div style="font-weight:700;color:{color};">{pct:.1f}% — {label}</div>
</div>
<div style="width:100%;height:10px;background:{bar_bg};border-radius:999px;overflow:hidden;">
<div style="height:100%;width:{pct:.4f}%;background:{color};"></div>
</div>
<div style="font-size:12px;color:#6b7280;margin-top:8px;">
Model: {MODEL_ID} · Threshold: {int(THRESHOLD*100)}%
</div>
</div>
</div>
"""
# ---- Gradio handlers ----
def analyze(pil_img: Image.Image):
if pil_img is None:
return result_card(0.0)
p_fake = predict_fake_prob(pil_img)
return result_card(p_fake)
# ---- UI ----
CUSTOM_CSS = """
.gradio-container {max-width: 980px !important;}
.sleek-card {
border: 1px solid #e5e7eb; border-radius: 16px; background: #fff;
box-shadow: 0 2px 10px rgba(16,24,40,.04); padding: 18px;
}
"""
with gr.Blocks(title="Deepfake Detector (SDXL ViT)", css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"<h2 style='text-align:center;margin-bottom:6px;'>Deepfake Detector (SDXL ViT)</h2>"
)
with gr.Row():
with gr.Column(scale=6, elem_classes=["sleek-card"]):
inp = gr.Image(
type="pil",
label="Upload / Paste Image",
sources=["upload", "webcam", "clipboard"],
height=420,
show_label=True,
interactive=True,
)
btn = gr.Button("Analyze", variant="primary", size="lg")
with gr.Column(scale=6):
out = gr.HTML()
btn.click(analyze, inputs=inp, outputs=out)
inp.change(analyze, inputs=inp, outputs=out)
if __name__ == "__main__":
demo.launch()
|