Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import base64 | |
| from io import BytesIO | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| from fastapi import FastAPI | |
| import numpy as np | |
| from PIL import Image | |
| import clip | |
| from dalle.models import Dalle | |
| from dalle.utils.utils import clip_score, download | |
| print("Loading models...") | |
| app = FastAPI() | |
| url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz" | |
| root = os.path.expanduser("~/.cache/minDALLE") | |
| filename = os.path.basename(url) | |
| pathname = filename[: -len(".tar.gz")] | |
| download_target = os.path.join(root, filename) | |
| result_path = os.path.join(root, pathname) | |
| if not os.path.exists(result_path): | |
| result_path = download(url, root) | |
| device = "cpu" | |
| model = Dalle.from_pretrained(result_path) # This will automatically download the pretrained model. | |
| model.to(device=device) | |
| model_clip, preprocess_clip = clip.load("ViT-B/32", device=device) | |
| model_clip.to(device=device) | |
| print("Models loaded !") | |
| def read_root(): | |
| return {"minDALL-E!"} | |
| def generate(prompt): | |
| images = sample(prompt) | |
| images = [to_base64(image) for image in images] | |
| return {"images": images} | |
| def sample(prompt): | |
| # Sampling | |
| images = ( | |
| model.sampling(prompt=prompt, top_k=256, top_p=None, softmax_temperature=1.0, num_candidates=3, device=device) | |
| .cpu() | |
| .numpy() | |
| ) | |
| images = np.transpose(images, (0, 2, 3, 1)) | |
| # CLIP Re-ranking | |
| rank = clip_score( | |
| prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device | |
| ) | |
| images = images[rank] | |
| pil_images = [] | |
| for i in range(len(images)): | |
| im = Image.fromarray((images[i] * 255).astype(np.uint8)) | |
| pil_images.append(im) | |
| return pil_images | |
| def to_base64(pil_image): | |
| buffered = BytesIO() | |
| pil_image.save(buffered, format="JPEG") | |
| return base64.b64encode(buffered.getvalue()) |