Spaces:
Runtime error
Runtime error
user
5fb352c
| import re | |
| from collections import namedtuple | |
| from typing import List | |
| import lark | |
| # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]" | |
| # will be represented with prompt_schedule like this (assuming steps=100): | |
| # [25, 'fantasy landscape with a mountain and an oak in foreground shoddy'] | |
| # [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy'] | |
| # [60, 'fantasy landscape with a lake and an oak in foreground in background masterful'] | |
| # [75, 'fantasy landscape with a lake and an oak in background masterful'] | |
| # [100, 'fantasy landscape with a lake and a christmas tree in background masterful'] | |
| schedule_parser = lark.Lark(r""" | |
| !start: (prompt | /[][():]/+)* | |
| prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)* | |
| !emphasized: "(" prompt ")" | |
| | "(" prompt ":" prompt ")" | |
| | "[" prompt "]" | |
| scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]" | |
| alternate: "[" prompt ("|" prompt)+ "]" | |
| WHITESPACE: /\s+/ | |
| plain: /([^\\\[\]():|]|\\.)+/ | |
| %import common.SIGNED_NUMBER -> NUMBER | |
| """) | |
| def get_learned_conditioning_prompt_schedules(prompts, steps): | |
| """ | |
| >>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0] | |
| >>> g("test") | |
| [[10, 'test']] | |
| >>> g("a [b:3]") | |
| [[3, 'a '], [10, 'a b']] | |
| >>> g("a [b: 3]") | |
| [[3, 'a '], [10, 'a b']] | |
| >>> g("a [[[b]]:2]") | |
| [[2, 'a '], [10, 'a [[b]]']] | |
| >>> g("[(a:2):3]") | |
| [[3, ''], [10, '(a:2)']] | |
| >>> g("a [b : c : 1] d") | |
| [[1, 'a b d'], [10, 'a c d']] | |
| >>> g("a[b:[c:d:2]:1]e") | |
| [[1, 'abe'], [2, 'ace'], [10, 'ade']] | |
| >>> g("a [unbalanced") | |
| [[10, 'a [unbalanced']] | |
| >>> g("a [b:.5] c") | |
| [[5, 'a c'], [10, 'a b c']] | |
| >>> g("a [{b|d{:.5] c") # not handling this right now | |
| [[5, 'a c'], [10, 'a {b|d{ c']] | |
| >>> g("((a][:b:c [d:3]") | |
| [[3, '((a][:b:c '], [10, '((a][:b:c d']] | |
| >>> g("[a|(b:1.1)]") | |
| [[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']] | |
| """ | |
| def collect_steps(steps, tree): | |
| l = [steps] | |
| class CollectSteps(lark.Visitor): | |
| def scheduled(self, tree): | |
| tree.children[-1] = float(tree.children[-1]) | |
| if tree.children[-1] < 1: | |
| tree.children[-1] *= steps | |
| tree.children[-1] = min(steps, int(tree.children[-1])) | |
| l.append(tree.children[-1]) | |
| def alternate(self, tree): | |
| l.extend(range(1, steps+1)) | |
| CollectSteps().visit(tree) | |
| return sorted(set(l)) | |
| def at_step(step, tree): | |
| class AtStep(lark.Transformer): | |
| def scheduled(self, args): | |
| before, after, _, when = args | |
| yield before or () if step <= when else after | |
| def alternate(self, args): | |
| yield next(args[(step - 1)%len(args)]) | |
| def start(self, args): | |
| def flatten(x): | |
| if type(x) == str: | |
| yield x | |
| else: | |
| for gen in x: | |
| yield from flatten(gen) | |
| return ''.join(flatten(args)) | |
| def plain(self, args): | |
| yield args[0].value | |
| def __default__(self, data, children, meta): | |
| for child in children: | |
| yield child | |
| return AtStep().transform(tree) | |
| def get_schedule(prompt): | |
| try: | |
| tree = schedule_parser.parse(prompt) | |
| except lark.exceptions.LarkError as e: | |
| if 0: | |
| import traceback | |
| traceback.print_exc() | |
| return [[steps, prompt]] | |
| return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)] | |
| promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)} | |
| return [promptdict[prompt] for prompt in prompts] | |
| ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) | |
| def get_learned_conditioning(model, prompts, steps): | |
| """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), | |
| and the sampling step at which this condition is to be replaced by the next one. | |
| Input: | |
| (model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20) | |
| Output: | |
| [ | |
| [ | |
| ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0')) | |
| ], | |
| [ | |
| ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')), | |
| ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0')) | |
| ] | |
| ] | |
| """ | |
| res = [] | |
| prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps) | |
| cache = {} | |
| for prompt, prompt_schedule in zip(prompts, prompt_schedules): | |
| cached = cache.get(prompt, None) | |
| if cached is not None: | |
| res.append(cached) | |
| continue | |
| texts = [x[1] for x in prompt_schedule] | |
| conds = model.get_learned_conditioning(texts) | |
| cond_schedule = [] | |
| for i, (end_at_step, text) in enumerate(prompt_schedule): | |
| cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) | |
| cache[prompt] = cond_schedule | |
| res.append(cond_schedule) | |
| return res | |
| re_AND = re.compile(r"\bAND\b") | |
| re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") | |
| def get_multicond_prompt_list(prompts): | |
| res_indexes = [] | |
| prompt_flat_list = [] | |
| prompt_indexes = {} | |
| for prompt in prompts: | |
| subprompts = re_AND.split(prompt) | |
| indexes = [] | |
| for subprompt in subprompts: | |
| match = re_weight.search(subprompt) | |
| text, weight = match.groups() if match is not None else (subprompt, 1.0) | |
| weight = float(weight) if weight is not None else 1.0 | |
| index = prompt_indexes.get(text, None) | |
| if index is None: | |
| index = len(prompt_flat_list) | |
| prompt_flat_list.append(text) | |
| prompt_indexes[text] = index | |
| indexes.append((index, weight)) | |
| res_indexes.append(indexes) | |
| return res_indexes, prompt_flat_list, prompt_indexes | |
| class ComposableScheduledPromptConditioning: | |
| def __init__(self, schedules, weight=1.0): | |
| self.schedules: List[ScheduledPromptConditioning] = schedules | |
| self.weight: float = weight | |
| class MulticondLearnedConditioning: | |
| def __init__(self, shape, batch): | |
| self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS | |
| self.batch: List[List[ComposableScheduledPromptConditioning]] = batch | |
| def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: | |
| """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. | |
| For each prompt, the list is obtained by splitting the prompt using the AND separator. | |
| https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/ | |
| """ | |
| res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts) | |
| learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps) | |
| res = [] | |
| for indexes in res_indexes: | |
| res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes]) | |
| return MulticondLearnedConditioning(shape=(len(prompts),), batch=res) | |
| def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): | |
| param = c[0][0].cond | |
| res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) | |
| for i, cond_schedule in enumerate(c): | |
| target_index = 0 | |
| for current, (end_at, cond) in enumerate(cond_schedule): | |
| if current_step <= end_at: | |
| target_index = current | |
| break | |
| res[i] = cond_schedule[target_index].cond | |
| return res | |
| def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): | |
| param = c.batch[0][0].schedules[0].cond | |
| tensors = [] | |
| conds_list = [] | |
| for batch_no, composable_prompts in enumerate(c.batch): | |
| conds_for_batch = [] | |
| for cond_index, composable_prompt in enumerate(composable_prompts): | |
| target_index = 0 | |
| for current, (end_at, cond) in enumerate(composable_prompt.schedules): | |
| if current_step <= end_at: | |
| target_index = current | |
| break | |
| conds_for_batch.append((len(tensors), composable_prompt.weight)) | |
| tensors.append(composable_prompt.schedules[target_index].cond) | |
| conds_list.append(conds_for_batch) | |
| # if prompts have wildly different lengths above the limit we'll get tensors fo different shapes | |
| # and won't be able to torch.stack them. So this fixes that. | |
| token_count = max([x.shape[0] for x in tensors]) | |
| for i in range(len(tensors)): | |
| if tensors[i].shape[0] != token_count: | |
| last_vector = tensors[i][-1:] | |
| last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1]) | |
| tensors[i] = torch.vstack([tensors[i], last_vector_repeated]) | |
| return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype) | |
| re_attention = re.compile(r""" | |
| \\\(| | |
| \\\)| | |
| \\\[| | |
| \\]| | |
| \\\\| | |
| \\| | |
| \(| | |
| \[| | |
| :([+-]?[.\d]+)\)| | |
| \)| | |
| ]| | |
| [^\\()\[\]:]+| | |
| : | |
| """, re.X) | |
| re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
| def parse_prompt_attention(text): | |
| """ | |
| Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
| Accepted tokens are: | |
| (abc) - increases attention to abc by a multiplier of 1.1 | |
| (abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
| [abc] - decreases attention to abc by a multiplier of 1.1 | |
| \( - literal character '(' | |
| \[ - literal character '[' | |
| \) - literal character ')' | |
| \] - literal character ']' | |
| \\ - literal character '\' | |
| anything else - just text | |
| >>> parse_prompt_attention('normal text') | |
| [['normal text', 1.0]] | |
| >>> parse_prompt_attention('an (important) word') | |
| [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
| >>> parse_prompt_attention('(unbalanced') | |
| [['unbalanced', 1.1]] | |
| >>> parse_prompt_attention('\(literal\]') | |
| [['(literal]', 1.0]] | |
| >>> parse_prompt_attention('(unnecessary)(parens)') | |
| [['unnecessaryparens', 1.1]] | |
| >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
| [['a ', 1.0], | |
| ['house', 1.5730000000000004], | |
| [' ', 1.1], | |
| ['on', 1.0], | |
| [' a ', 1.1], | |
| ['hill', 0.55], | |
| [', sun, ', 1.1], | |
| ['sky', 1.4641000000000006], | |
| ['.', 1.1]] | |
| """ | |
| res = [] | |
| round_brackets = [] | |
| square_brackets = [] | |
| round_bracket_multiplier = 1.1 | |
| square_bracket_multiplier = 1 / 1.1 | |
| def multiply_range(start_position, multiplier): | |
| for p in range(start_position, len(res)): | |
| res[p][1] *= multiplier | |
| for m in re_attention.finditer(text): | |
| text = m.group(0) | |
| weight = m.group(1) | |
| if text.startswith('\\'): | |
| res.append([text[1:], 1.0]) | |
| elif text == '(': | |
| round_brackets.append(len(res)) | |
| elif text == '[': | |
| square_brackets.append(len(res)) | |
| elif weight is not None and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), float(weight)) | |
| elif text == ')' and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
| elif text == ']' and len(square_brackets) > 0: | |
| multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
| else: | |
| parts = re.split(re_break, text) | |
| for i, part in enumerate(parts): | |
| if i > 0: | |
| res.append(["BREAK", -1]) | |
| res.append([part, 1.0]) | |
| for pos in round_brackets: | |
| multiply_range(pos, round_bracket_multiplier) | |
| for pos in square_brackets: | |
| multiply_range(pos, square_bracket_multiplier) | |
| if len(res) == 0: | |
| res = [["", 1.0]] | |
| # merge runs of identical weights | |
| i = 0 | |
| while i + 1 < len(res): | |
| if res[i][1] == res[i + 1][1]: | |
| res[i][0] += res[i + 1][0] | |
| res.pop(i + 1) | |
| else: | |
| i += 1 | |
| return res | |
| if __name__ == "__main__": | |
| import doctest | |
| doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) | |
| else: | |
| import torch # doctest faster | |