Spaces:
Running
Running
Resolve all merge conflicts - keep DataEngEval version
Browse files- .gitattributes +35 -0
- .gitignore +14 -0
- .pre-commit-config.yaml +53 -0
- Makefile +13 -0
- README.md +33 -151
- app.py +4 -4
- pyproject.toml +13 -0
- requirements.txt +1 -1
- src/about.py +72 -0
- src/display/css_html_js.py +105 -0
- src/display/formatting.py +27 -0
- src/display/utils.py +110 -0
- src/envs.py +25 -0
- src/leaderboard/read_evals.py +196 -0
- src/populate.py +58 -0
- src/submission/check_validity.py +99 -0
- src/submission/submit.py +119 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -59,6 +59,7 @@ checkpoints/
|
|
| 59 |
|
| 60 |
# Jupyter
|
| 61 |
.ipynb_checkpoints/
|
|
|
|
| 62 |
|
| 63 |
# pytest
|
| 64 |
.pytest_cache/
|
|
@@ -69,3 +70,16 @@ htmlcov/
|
|
| 69 |
.mypy_cache/
|
| 70 |
.dmypy.json
|
| 71 |
dmypy.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Jupyter
|
| 61 |
.ipynb_checkpoints/
|
| 62 |
+
*ipynb
|
| 63 |
|
| 64 |
# pytest
|
| 65 |
.pytest_cache/
|
|
|
|
| 70 |
.mypy_cache/
|
| 71 |
.dmypy.json
|
| 72 |
dmypy.json
|
| 73 |
+
|
| 74 |
+
# Environment
|
| 75 |
+
.env
|
| 76 |
+
|
| 77 |
+
# Auto evals
|
| 78 |
+
auto_evals/
|
| 79 |
+
|
| 80 |
+
# Evaluation queues
|
| 81 |
+
eval-queue/
|
| 82 |
+
eval-results/
|
| 83 |
+
eval-queue-bk/
|
| 84 |
+
eval-results-bk/
|
| 85 |
+
logs/
|
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
default_language_version:
|
| 16 |
+
python: python3
|
| 17 |
+
|
| 18 |
+
ci:
|
| 19 |
+
autofix_prs: true
|
| 20 |
+
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
| 21 |
+
autoupdate_schedule: quarterly
|
| 22 |
+
|
| 23 |
+
repos:
|
| 24 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 25 |
+
rev: v4.3.0
|
| 26 |
+
hooks:
|
| 27 |
+
- id: check-yaml
|
| 28 |
+
- id: check-case-conflict
|
| 29 |
+
- id: detect-private-key
|
| 30 |
+
- id: check-added-large-files
|
| 31 |
+
args: ['--maxkb=1000']
|
| 32 |
+
- id: requirements-txt-fixer
|
| 33 |
+
- id: end-of-file-fixer
|
| 34 |
+
- id: trailing-whitespace
|
| 35 |
+
|
| 36 |
+
- repo: https://github.com/PyCQA/isort
|
| 37 |
+
rev: 5.12.0
|
| 38 |
+
hooks:
|
| 39 |
+
- id: isort
|
| 40 |
+
name: Format imports
|
| 41 |
+
|
| 42 |
+
- repo: https://github.com/psf/black
|
| 43 |
+
rev: 22.12.0
|
| 44 |
+
hooks:
|
| 45 |
+
- id: black
|
| 46 |
+
name: Format code
|
| 47 |
+
additional_dependencies: ['click==8.0.2']
|
| 48 |
+
|
| 49 |
+
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
| 50 |
+
# Ruff version.
|
| 51 |
+
rev: 'v0.0.267'
|
| 52 |
+
hooks:
|
| 53 |
+
- id: ruff
|
Makefile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.PHONY: style format
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
style:
|
| 5 |
+
python -m black --line-length 119 .
|
| 6 |
+
python -m isort .
|
| 7 |
+
ruff check --fix .
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
quality:
|
| 11 |
+
python -m black --check --line-length 119 .
|
| 12 |
+
python -m isort --check-only .
|
| 13 |
+
ruff check .
|
README.md
CHANGED
|
@@ -1,17 +1,26 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
A
|
| 4 |
|
| 5 |
## 🚀 Features
|
| 6 |
|
| 7 |
-
- **Multi-
|
| 8 |
-
- **
|
| 9 |
-
- **
|
| 10 |
-
- **
|
| 11 |
-
- **
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
## 🏗️ Project Structure
|
| 17 |
|
|
@@ -19,21 +28,22 @@ A config-driven evaluation platform for English → SQL tasks across Presto, Big
|
|
| 19 |
dataeng-leaderboard/
|
| 20 |
├── app.py # Main Gradio application
|
| 21 |
├── requirements.txt # Dependencies for Hugging Face Spaces
|
| 22 |
-
├── config/
|
| 23 |
-
│
|
|
|
|
|
|
|
|
|
|
| 24 |
├── src/ # Source code modules
|
| 25 |
│ ├── evaluator.py # Dataset management and evaluation
|
| 26 |
│ ├── models_registry.py # Model configuration and interfaces
|
| 27 |
│ ├── scoring.py # Metrics computation
|
| 28 |
│ └── utils/ # Utility functions
|
| 29 |
-
├── tasks/ #
|
| 30 |
-
│ ├──
|
| 31 |
-
│
|
|
|
|
| 32 |
├── prompts/ # SQL generation templates
|
| 33 |
-
|
| 34 |
-
│ ├── template_bigquery.txt
|
| 35 |
-
│ └── template_snowflake.txt
|
| 36 |
-
└── static/ # Static assets
|
| 37 |
```
|
| 38 |
|
| 39 |
## 🚀 Quick Start
|
|
@@ -63,15 +73,11 @@ pip install -r requirements.txt
|
|
| 63 |
export HF_TOKEN="your_huggingface_token" # For Hugging Face models
|
| 64 |
```
|
| 65 |
|
| 66 |
-
**Note**: If no HF_TOKEN is provided, the system will automatically enable **mock mode** for demo purposes. Mock mode generates realistic SQL queries and provides full functionality for testing the evaluation pipeline.
|
| 67 |
-
|
| 68 |
4. Run the application:
|
| 69 |
```bash
|
| 70 |
gradio app.py
|
| 71 |
```
|
| 72 |
|
| 73 |
-
The app will be available at `http://localhost:7860`.
|
| 74 |
-
|
| 75 |
## 📊 Usage
|
| 76 |
|
| 77 |
### Evaluating Models
|
|
@@ -111,7 +117,7 @@ Edit `config/models.yaml` to add new models:
|
|
| 111 |
```yaml
|
| 112 |
models:
|
| 113 |
- name: "Your Model Name"
|
| 114 |
-
provider: "huggingface"
|
| 115 |
model_id: "your/model-id"
|
| 116 |
params:
|
| 117 |
max_new_tokens: 512
|
|
@@ -119,108 +125,14 @@ models:
|
|
| 119 |
description: "Description of your model"
|
| 120 |
```
|
| 121 |
|
| 122 |
-
Supported providers:
|
| 123 |
-
- `huggingface`: Uses Hugging Face Inference API
|
| 124 |
-
|
| 125 |
### Adding New Datasets
|
| 126 |
|
| 127 |
1. Create a new folder under `tasks/` (e.g., `tasks/my_dataset/`)
|
| 128 |
2. Add three required files:
|
| 129 |
|
| 130 |
**`schema.sql`**: Database schema definition
|
| 131 |
-
```sql
|
| 132 |
-
CREATE TABLE my_table (
|
| 133 |
-
id INTEGER,
|
| 134 |
-
name VARCHAR(100)
|
| 135 |
-
);
|
| 136 |
-
```
|
| 137 |
-
|
| 138 |
**`loader.py`**: Database creation script
|
| 139 |
-
```python
|
| 140 |
-
import duckdb
|
| 141 |
-
import os
|
| 142 |
-
|
| 143 |
-
def create_database(db_path: str = "my_dataset.duckdb"):
|
| 144 |
-
conn = duckdb.connect(db_path)
|
| 145 |
-
# Create tables and insert sample data
|
| 146 |
-
conn.execute("CREATE TABLE my_table (id INTEGER, name VARCHAR(100))")
|
| 147 |
-
conn.executemany("INSERT INTO my_table VALUES (?, ?)", [(1, "Alice"), (2, "Bob")])
|
| 148 |
-
conn.close()
|
| 149 |
-
return db_path
|
| 150 |
-
```
|
| 151 |
-
|
| 152 |
**`cases.yaml`**: Test cases with questions and reference SQL
|
| 153 |
-
```yaml
|
| 154 |
-
cases:
|
| 155 |
-
- id: "simple_query"
|
| 156 |
-
question: "How many records are in the table?"
|
| 157 |
-
reference_sql:
|
| 158 |
-
presto: "SELECT COUNT(*) FROM my_table"
|
| 159 |
-
bigquery: "SELECT COUNT(*) FROM my_table"
|
| 160 |
-
snowflake: "SELECT COUNT(*) FROM my_table"
|
| 161 |
-
difficulty: "easy"
|
| 162 |
-
description: "Simple count query"
|
| 163 |
-
```
|
| 164 |
-
|
| 165 |
-
### Customizing Prompts
|
| 166 |
-
|
| 167 |
-
Edit prompt templates in the `prompts/` directory:
|
| 168 |
-
- `template_presto.txt`: For Presto/Trino SQL
|
| 169 |
-
- `template_bigquery.txt`: For BigQuery SQL
|
| 170 |
-
- `template_snowflake.txt`: For Snowflake SQL
|
| 171 |
-
|
| 172 |
-
Templates must include `{schema}` and `{question}` placeholders.
|
| 173 |
-
|
| 174 |
-
## 🏗️ Architecture
|
| 175 |
-
|
| 176 |
-
### Core Components
|
| 177 |
-
|
| 178 |
-
- **`app.py`**: Gradio UI and main application
|
| 179 |
-
- **`src/evaluator.py`**: Dataset management, SQL execution, and metrics computation
|
| 180 |
-
- **`src/models_registry.py`**: Model configuration loading and API interfaces
|
| 181 |
-
- **`src/scoring.py`**: Metrics normalization and composite scoring
|
| 182 |
-
- **`config/models.yaml`**: Model configurations
|
| 183 |
-
- **`prompts/`**: SQL generation prompt templates
|
| 184 |
-
- **`tasks/`**: Dataset definitions and test cases
|
| 185 |
-
|
| 186 |
-
### Data Flow
|
| 187 |
-
|
| 188 |
-
1. User selects dataset, dialect, case, and models
|
| 189 |
-
2. System loads dataset schema and creates DuckDB database
|
| 190 |
-
3. For each model:
|
| 191 |
-
- Loads appropriate prompt template
|
| 192 |
-
- Generates SQL using Hugging Face Inference API
|
| 193 |
-
- Transpiles SQL to target dialect
|
| 194 |
-
- Executes both reference and candidate SQL
|
| 195 |
-
- Computes metrics and composite score
|
| 196 |
-
4. Results are added to leaderboard and displayed
|
| 197 |
-
|
| 198 |
-
### Storage
|
| 199 |
-
|
| 200 |
-
- **Leaderboard**: Stored in `tasks/leaderboard.parquet` (persists across runs)
|
| 201 |
-
- **Databases**: Temporary DuckDB files created per evaluation
|
| 202 |
-
- **Models**: Loaded dynamically from YAML configuration
|
| 203 |
-
|
| 204 |
-
## 🔧 Hugging Face Spaces Optimization
|
| 205 |
-
|
| 206 |
-
This project is specifically optimized for Hugging Face Spaces deployment:
|
| 207 |
-
|
| 208 |
-
### Key Features
|
| 209 |
-
- **Remote Inference**: Uses Hugging Face Inference API instead of local model loading
|
| 210 |
-
- **Lightweight Dependencies**: Minimal requirements.txt without heavy ML libraries
|
| 211 |
-
- **No Local Models**: All model inference happens remotely
|
| 212 |
-
- **Automatic Deployment**: Git-based deployment with automatic builds
|
| 213 |
-
|
| 214 |
-
### Environment Variables
|
| 215 |
-
- `HF_TOKEN`: Hugging Face API token (optional - enables real model inference)
|
| 216 |
-
- `MOCK_MODE`: Set to "true" to force mock mode for demos
|
| 217 |
-
|
| 218 |
-
### Mock Mode
|
| 219 |
-
When no API keys are available, the system automatically enables mock mode, which:
|
| 220 |
-
- Generates realistic SQL queries based on question patterns
|
| 221 |
-
- Provides full evaluation functionality for testing
|
| 222 |
-
- Shows how the system works without requiring external APIs
|
| 223 |
-
- Perfect for demos and development
|
| 224 |
|
| 225 |
## 🤝 Contributing
|
| 226 |
|
|
@@ -236,42 +148,12 @@ When no API keys are available, the system automatically enables mock mode, whic
|
|
| 236 |
|
| 237 |
Run the test suite:
|
| 238 |
```bash
|
| 239 |
-
|
| 240 |
```
|
| 241 |
|
| 242 |
-
### Code Style
|
| 243 |
-
|
| 244 |
-
Format code with Black:
|
| 245 |
-
```bash
|
| 246 |
-
black .
|
| 247 |
-
```
|
| 248 |
-
|
| 249 |
-
Check code style with flake8:
|
| 250 |
-
```bash
|
| 251 |
-
flake8 .
|
| 252 |
-
```
|
| 253 |
-
|
| 254 |
-
## 🐛 Troubleshooting
|
| 255 |
-
|
| 256 |
-
### Common Issues
|
| 257 |
-
|
| 258 |
-
**"Model not found" error**: Check that the model is properly configured in `config/models.yaml`**
|
| 259 |
-
|
| 260 |
-
**"Dataset not found" error**: Ensure the dataset folder exists under `tasks/` with all required files
|
| 261 |
-
|
| 262 |
-
**API errors**: Verify that API keys are set correctly and models are accessible
|
| 263 |
-
|
| 264 |
-
**SQL execution errors**: Check that the dataset loader creates valid data and the schema is correct
|
| 265 |
-
|
| 266 |
-
### Performance Tips
|
| 267 |
-
|
| 268 |
-
- Use smaller datasets for faster evaluation
|
| 269 |
-
- Limit the number of models evaluated simultaneously
|
| 270 |
-
- Consider using Hugging Face Inference API for better performance
|
| 271 |
-
|
| 272 |
## 📄 License
|
| 273 |
|
| 274 |
-
This project is
|
| 275 |
|
| 276 |
## 🙏 Acknowledgments
|
| 277 |
|
|
@@ -279,4 +161,4 @@ This project is open source. Please check the license file for details.
|
|
| 279 |
- SQL transpilation powered by [sqlglot](https://github.com/tobymao/sqlglot)
|
| 280 |
- Database execution using [DuckDB](https://duckdb.org/)
|
| 281 |
- Model APIs from [Hugging Face](https://huggingface.co/)
|
| 282 |
-
- Deployed on [Hugging Face Spaces](https://huggingface.co/spaces)
|
|
|
|
| 1 |
+
# DataEngEval
|
| 2 |
|
| 3 |
+
A comprehensive evaluation platform for AI models across SQL generation and code generation. Compare model performance with standardized metrics on real-world datasets including NYC Taxi queries, Python algorithms, and Go web services.
|
| 4 |
|
| 5 |
## 🚀 Features
|
| 6 |
|
| 7 |
+
- **Multi-use-case evaluation**: SQL generation, Python code, Go services
|
| 8 |
+
- **Real-world datasets**: NYC Taxi, sorting algorithms, HTTP handlers, concurrency patterns
|
| 9 |
+
- **Comprehensive metrics**: Correctness, execution success, syntax validation, performance
|
| 10 |
+
- **Remote inference**: Uses Hugging Face Inference API (no local model downloads)
|
| 11 |
+
- **Mock mode**: Works without API keys for demos
|
| 12 |
+
|
| 13 |
+
## 🎯 Current Use Cases
|
| 14 |
+
|
| 15 |
+
### SQL Generation
|
| 16 |
+
- **Dataset**: NYC Taxi Small
|
| 17 |
+
- **Dialects**: Presto, BigQuery, Snowflake
|
| 18 |
+
- **Metrics**: Correctness, execution, result matching, dialect compliance
|
| 19 |
+
|
| 20 |
+
### Code Generation
|
| 21 |
+
- **Python**: Algorithms, data structures, object-oriented programming
|
| 22 |
+
- **Go**: Web services, concurrency, HTTP handlers
|
| 23 |
+
- **Metrics**: Syntax correctness, compilation success, execution success, code quality
|
| 24 |
|
| 25 |
## 🏗️ Project Structure
|
| 26 |
|
|
|
|
| 28 |
dataeng-leaderboard/
|
| 29 |
├── app.py # Main Gradio application
|
| 30 |
├── requirements.txt # Dependencies for Hugging Face Spaces
|
| 31 |
+
├── config/ # Configuration files
|
| 32 |
+
│ ├── app.yaml # App settings
|
| 33 |
+
│ ├── models.yaml # Model configurations
|
| 34 |
+
│ ├── metrics.yaml # Scoring weights
|
| 35 |
+
│ └── use_cases.yaml # Use case definitions
|
| 36 |
├── src/ # Source code modules
|
| 37 |
│ ├── evaluator.py # Dataset management and evaluation
|
| 38 |
│ ├── models_registry.py # Model configuration and interfaces
|
| 39 |
│ ├── scoring.py # Metrics computation
|
| 40 |
│ └── utils/ # Utility functions
|
| 41 |
+
├── tasks/ # Multi-use-case datasets
|
| 42 |
+
│ ├── sql_generation/ # SQL generation tasks
|
| 43 |
+
│ ├── code_generation/ # Code generation tasks
|
| 44 |
+
│ └── documentation/ # Documentation tasks
|
| 45 |
├── prompts/ # SQL generation templates
|
| 46 |
+
└── test/ # Test files
|
|
|
|
|
|
|
|
|
|
| 47 |
```
|
| 48 |
|
| 49 |
## 🚀 Quick Start
|
|
|
|
| 73 |
export HF_TOKEN="your_huggingface_token" # For Hugging Face models
|
| 74 |
```
|
| 75 |
|
|
|
|
|
|
|
| 76 |
4. Run the application:
|
| 77 |
```bash
|
| 78 |
gradio app.py
|
| 79 |
```
|
| 80 |
|
|
|
|
|
|
|
| 81 |
## 📊 Usage
|
| 82 |
|
| 83 |
### Evaluating Models
|
|
|
|
| 117 |
```yaml
|
| 118 |
models:
|
| 119 |
- name: "Your Model Name"
|
| 120 |
+
provider: "huggingface"
|
| 121 |
model_id: "your/model-id"
|
| 122 |
params:
|
| 123 |
max_new_tokens: 512
|
|
|
|
| 125 |
description: "Description of your model"
|
| 126 |
```
|
| 127 |
|
|
|
|
|
|
|
|
|
|
| 128 |
### Adding New Datasets
|
| 129 |
|
| 130 |
1. Create a new folder under `tasks/` (e.g., `tasks/my_dataset/`)
|
| 131 |
2. Add three required files:
|
| 132 |
|
| 133 |
**`schema.sql`**: Database schema definition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
**`loader.py`**: Database creation script
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
**`cases.yaml`**: Test cases with questions and reference SQL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
## 🤝 Contributing
|
| 138 |
|
|
|
|
| 148 |
|
| 149 |
Run the test suite:
|
| 150 |
```bash
|
| 151 |
+
python run_tests.py
|
| 152 |
```
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
## 📄 License
|
| 155 |
|
| 156 |
+
This project is licensed under the Apache-2.0 License.
|
| 157 |
|
| 158 |
## 🙏 Acknowledgments
|
| 159 |
|
|
|
|
| 161 |
- SQL transpilation powered by [sqlglot](https://github.com/tobymao/sqlglot)
|
| 162 |
- Database execution using [DuckDB](https://duckdb.org/)
|
| 163 |
- Model APIs from [Hugging Face](https://huggingface.co/)
|
| 164 |
+
- Deployed on [Hugging Face Spaces](https://huggingface.co/spaces)
|
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
Main application for the Hugging Face Space deployment.
|
| 4 |
"""
|
| 5 |
|
|
@@ -314,14 +314,14 @@ def create_interface():
|
|
| 314 |
# Info Tab
|
| 315 |
with gr.Tab(ui_config["tabs"][2]["label"]):
|
| 316 |
gr.Markdown("""
|
| 317 |
-
## About
|
| 318 |
|
| 319 |
This platform evaluates natural language to SQL generation across multiple dialects and datasets using Hugging Face Spaces.
|
| 320 |
|
| 321 |
### Features
|
| 322 |
- **Multi-dialect support**: Presto, BigQuery, Snowflake
|
| 323 |
- **Config-driven models**: Add new models by editing `config/models.yaml`
|
| 324 |
-
- **Multiple datasets**: NYC Taxi
|
| 325 |
- **Comprehensive metrics**: Correctness, execution success, result matching, latency
|
| 326 |
- **Public leaderboard**: Track performance across models and datasets
|
| 327 |
- **Remote inference**: No heavy model downloads - uses Hugging Face Inference API
|
|
@@ -374,4 +374,4 @@ if __name__ == "__main__":
|
|
| 374 |
server_name=app_config.server_host,
|
| 375 |
server_port=app_config.server_port,
|
| 376 |
share=app_config.server_share
|
| 377 |
-
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
DataEngEval - Hugging Face Spaces App
|
| 3 |
Main application for the Hugging Face Space deployment.
|
| 4 |
"""
|
| 5 |
|
|
|
|
| 314 |
# Info Tab
|
| 315 |
with gr.Tab(ui_config["tabs"][2]["label"]):
|
| 316 |
gr.Markdown("""
|
| 317 |
+
## About DataEngEval
|
| 318 |
|
| 319 |
This platform evaluates natural language to SQL generation across multiple dialects and datasets using Hugging Face Spaces.
|
| 320 |
|
| 321 |
### Features
|
| 322 |
- **Multi-dialect support**: Presto, BigQuery, Snowflake
|
| 323 |
- **Config-driven models**: Add new models by editing `config/models.yaml`
|
| 324 |
+
- **Multiple datasets**: NYC Taxi (with more coming)
|
| 325 |
- **Comprehensive metrics**: Correctness, execution success, result matching, latency
|
| 326 |
- **Public leaderboard**: Track performance across models and datasets
|
| 327 |
- **Remote inference**: No heavy model downloads - uses Hugging Face Inference API
|
|
|
|
| 374 |
server_name=app_config.server_host,
|
| 375 |
server_port=app_config.server_port,
|
| 376 |
share=app_config.server_share
|
| 377 |
+
)
|
pyproject.toml
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.ruff]
|
| 2 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
| 3 |
+
select = ["E", "F"]
|
| 4 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
| 5 |
+
line-length = 119
|
| 6 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
| 7 |
+
|
| 8 |
+
[tool.isort]
|
| 9 |
+
profile = "black"
|
| 10 |
+
line_length = 119
|
| 11 |
+
|
| 12 |
+
[tool.black]
|
| 13 |
+
line-length = 119
|
requirements.txt
CHANGED
|
@@ -19,4 +19,4 @@ uvicorn>=0.23.0
|
|
| 19 |
pytest>=7.4.0
|
| 20 |
pytest-cov>=4.0.0
|
| 21 |
black>=23.0.0
|
| 22 |
-
flake8>=6.0.0
|
|
|
|
| 19 |
pytest>=7.4.0
|
| 20 |
pytest-cov>=4.0.0
|
| 21 |
black>=23.0.0
|
| 22 |
+
flake8>=6.0.0
|
src/about.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from enum import Enum
|
| 3 |
+
|
| 4 |
+
@dataclass
|
| 5 |
+
class Task:
|
| 6 |
+
benchmark: str
|
| 7 |
+
metric: str
|
| 8 |
+
col_name: str
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Select your tasks here
|
| 12 |
+
# ---------------------------------------------------
|
| 13 |
+
class Tasks(Enum):
|
| 14 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
+
|
| 18 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
+
# ---------------------------------------------------
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Your leaderboard name
|
| 24 |
+
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
| 25 |
+
|
| 26 |
+
# What does your leaderboard evaluate?
|
| 27 |
+
INTRODUCTION_TEXT = """
|
| 28 |
+
Intro text
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
| 32 |
+
LLM_BENCHMARKS_TEXT = f"""
|
| 33 |
+
## How it works
|
| 34 |
+
|
| 35 |
+
## Reproducibility
|
| 36 |
+
To reproduce our results, here is the commands you can run:
|
| 37 |
+
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
EVALUATION_QUEUE_TEXT = """
|
| 41 |
+
## Some good practices before submitting a model
|
| 42 |
+
|
| 43 |
+
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
| 44 |
+
```python
|
| 45 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 46 |
+
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 47 |
+
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 49 |
+
```
|
| 50 |
+
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 51 |
+
|
| 52 |
+
Note: make sure your model is public!
|
| 53 |
+
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
| 54 |
+
|
| 55 |
+
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
| 56 |
+
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
| 57 |
+
|
| 58 |
+
### 3) Make sure your model has an open license!
|
| 59 |
+
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
| 60 |
+
|
| 61 |
+
### 4) Fill up your model card
|
| 62 |
+
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
| 63 |
+
|
| 64 |
+
## In case of model failure
|
| 65 |
+
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 66 |
+
Make sure you have followed the above steps first.
|
| 67 |
+
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 71 |
+
CITATION_BUTTON_TEXT = r"""
|
| 72 |
+
"""
|
src/display/css_html_js.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
custom_css = """
|
| 2 |
+
|
| 3 |
+
.markdown-text {
|
| 4 |
+
font-size: 16px !important;
|
| 5 |
+
}
|
| 6 |
+
|
| 7 |
+
#models-to-add-text {
|
| 8 |
+
font-size: 18px !important;
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
#citation-button span {
|
| 12 |
+
font-size: 16px !important;
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
#citation-button textarea {
|
| 16 |
+
font-size: 16px !important;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
#citation-button > label > button {
|
| 20 |
+
margin: 6px;
|
| 21 |
+
transform: scale(1.3);
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
#leaderboard-table {
|
| 25 |
+
margin-top: 15px
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
#leaderboard-table-lite {
|
| 29 |
+
margin-top: 15px
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
#search-bar-table-box > div:first-child {
|
| 33 |
+
background: none;
|
| 34 |
+
border: none;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
#search-bar {
|
| 38 |
+
padding: 0px;
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 42 |
+
#leaderboard-table td:nth-child(2),
|
| 43 |
+
#leaderboard-table th:nth-child(2) {
|
| 44 |
+
max-width: 400px;
|
| 45 |
+
overflow: auto;
|
| 46 |
+
white-space: nowrap;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
.tab-buttons button {
|
| 50 |
+
font-size: 20px;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
#scale-logo {
|
| 54 |
+
border-style: none !important;
|
| 55 |
+
box-shadow: none;
|
| 56 |
+
display: block;
|
| 57 |
+
margin-left: auto;
|
| 58 |
+
margin-right: auto;
|
| 59 |
+
max-width: 600px;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
#scale-logo .download {
|
| 63 |
+
display: none;
|
| 64 |
+
}
|
| 65 |
+
#filter_type{
|
| 66 |
+
border: 0;
|
| 67 |
+
padding-left: 0;
|
| 68 |
+
padding-top: 0;
|
| 69 |
+
}
|
| 70 |
+
#filter_type label {
|
| 71 |
+
display: flex;
|
| 72 |
+
}
|
| 73 |
+
#filter_type label > span{
|
| 74 |
+
margin-top: var(--spacing-lg);
|
| 75 |
+
margin-right: 0.5em;
|
| 76 |
+
}
|
| 77 |
+
#filter_type label > .wrap{
|
| 78 |
+
width: 103px;
|
| 79 |
+
}
|
| 80 |
+
#filter_type label > .wrap .wrap-inner{
|
| 81 |
+
padding: 2px;
|
| 82 |
+
}
|
| 83 |
+
#filter_type label > .wrap .wrap-inner input{
|
| 84 |
+
width: 1px
|
| 85 |
+
}
|
| 86 |
+
#filter-columns-type{
|
| 87 |
+
border:0;
|
| 88 |
+
padding:0.5;
|
| 89 |
+
}
|
| 90 |
+
#filter-columns-size{
|
| 91 |
+
border:0;
|
| 92 |
+
padding:0.5;
|
| 93 |
+
}
|
| 94 |
+
#box-filter > .form{
|
| 95 |
+
border: 0
|
| 96 |
+
}
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
get_window_url_params = """
|
| 100 |
+
function(url_params) {
|
| 101 |
+
const params = new URLSearchParams(window.location.search);
|
| 102 |
+
url_params = Object.fromEntries(params);
|
| 103 |
+
return url_params;
|
| 104 |
+
}
|
| 105 |
+
"""
|
src/display/formatting.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def model_hyperlink(link, model_name):
|
| 2 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def make_clickable_model(model_name):
|
| 6 |
+
link = f"https://huggingface.co/{model_name}"
|
| 7 |
+
return model_hyperlink(link, model_name)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def styled_error(error):
|
| 11 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def styled_warning(warn):
|
| 15 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def styled_message(message):
|
| 19 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def has_no_nan_values(df, columns):
|
| 23 |
+
return df[columns].notna().all(axis=1)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def has_nan_values(df, columns):
|
| 27 |
+
return df[columns].isna().any(axis=1)
|
src/display/utils.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, make_dataclass
|
| 2 |
+
from enum import Enum
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
from src.about import Tasks
|
| 7 |
+
|
| 8 |
+
def fields(raw_class):
|
| 9 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# These classes are for user facing column names,
|
| 13 |
+
# to avoid having to change them all around the code
|
| 14 |
+
# when a modif is needed
|
| 15 |
+
@dataclass
|
| 16 |
+
class ColumnContent:
|
| 17 |
+
name: str
|
| 18 |
+
type: str
|
| 19 |
+
displayed_by_default: bool
|
| 20 |
+
hidden: bool = False
|
| 21 |
+
never_hidden: bool = False
|
| 22 |
+
|
| 23 |
+
## Leaderboard columns
|
| 24 |
+
auto_eval_column_dict = []
|
| 25 |
+
# Init
|
| 26 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
+
#Scores
|
| 29 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 30 |
+
for task in Tasks:
|
| 31 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 32 |
+
# Model information
|
| 33 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
+
|
| 43 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
+
|
| 46 |
+
## For the queue columns in the submission tab
|
| 47 |
+
@dataclass(frozen=True)
|
| 48 |
+
class EvalQueueColumn: # Queue column
|
| 49 |
+
model = ColumnContent("model", "markdown", True)
|
| 50 |
+
revision = ColumnContent("revision", "str", True)
|
| 51 |
+
private = ColumnContent("private", "bool", True)
|
| 52 |
+
precision = ColumnContent("precision", "str", True)
|
| 53 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
+
status = ColumnContent("status", "str", True)
|
| 55 |
+
|
| 56 |
+
## All the model information that we might need
|
| 57 |
+
@dataclass
|
| 58 |
+
class ModelDetails:
|
| 59 |
+
name: str
|
| 60 |
+
display_name: str = ""
|
| 61 |
+
symbol: str = "" # emoji
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ModelType(Enum):
|
| 65 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 66 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
| 67 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 68 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
| 69 |
+
Unknown = ModelDetails(name="", symbol="?")
|
| 70 |
+
|
| 71 |
+
def to_str(self, separator=" "):
|
| 72 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 73 |
+
|
| 74 |
+
@staticmethod
|
| 75 |
+
def from_str(type):
|
| 76 |
+
if "fine-tuned" in type or "🔶" in type:
|
| 77 |
+
return ModelType.FT
|
| 78 |
+
if "pretrained" in type or "🟢" in type:
|
| 79 |
+
return ModelType.PT
|
| 80 |
+
if "RL-tuned" in type or "🟦" in type:
|
| 81 |
+
return ModelType.RL
|
| 82 |
+
if "instruction-tuned" in type or "⭕" in type:
|
| 83 |
+
return ModelType.IFT
|
| 84 |
+
return ModelType.Unknown
|
| 85 |
+
|
| 86 |
+
class WeightType(Enum):
|
| 87 |
+
Adapter = ModelDetails("Adapter")
|
| 88 |
+
Original = ModelDetails("Original")
|
| 89 |
+
Delta = ModelDetails("Delta")
|
| 90 |
+
|
| 91 |
+
class Precision(Enum):
|
| 92 |
+
float16 = ModelDetails("float16")
|
| 93 |
+
bfloat16 = ModelDetails("bfloat16")
|
| 94 |
+
Unknown = ModelDetails("?")
|
| 95 |
+
|
| 96 |
+
def from_str(precision):
|
| 97 |
+
if precision in ["torch.float16", "float16"]:
|
| 98 |
+
return Precision.float16
|
| 99 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 100 |
+
return Precision.bfloat16
|
| 101 |
+
return Precision.Unknown
|
| 102 |
+
|
| 103 |
+
# Column selection
|
| 104 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 105 |
+
|
| 106 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 107 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 108 |
+
|
| 109 |
+
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 110 |
+
|
src/envs.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from huggingface_hub import HfApi
|
| 4 |
+
|
| 5 |
+
# Info to change for your repository
|
| 6 |
+
# ----------------------------------
|
| 7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
+
|
| 9 |
+
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
+
# ----------------------------------
|
| 11 |
+
|
| 12 |
+
REPO_ID = f"{OWNER}/leaderboard"
|
| 13 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
| 14 |
+
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
+
|
| 16 |
+
# If you setup a cache later, just change HF_HOME
|
| 17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
+
|
| 19 |
+
# Local caches
|
| 20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 24 |
+
|
| 25 |
+
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import json
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
import dateutil
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
from src.display.formatting import make_clickable_model
|
| 11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 12 |
+
from src.submission.check_validity import is_model_on_hub
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class EvalResult:
|
| 17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
+
"""
|
| 19 |
+
eval_name: str # org_model_precision (uid)
|
| 20 |
+
full_model: str # org/model (path on hub)
|
| 21 |
+
org: str
|
| 22 |
+
model: str
|
| 23 |
+
revision: str # commit hash, "" if main
|
| 24 |
+
results: dict
|
| 25 |
+
precision: Precision = Precision.Unknown
|
| 26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
+
architecture: str = "Unknown"
|
| 29 |
+
license: str = "?"
|
| 30 |
+
likes: int = 0
|
| 31 |
+
num_params: int = 0
|
| 32 |
+
date: str = "" # submission date of request file
|
| 33 |
+
still_on_hub: bool = False
|
| 34 |
+
|
| 35 |
+
@classmethod
|
| 36 |
+
def init_from_json_file(self, json_filepath):
|
| 37 |
+
"""Inits the result from the specific model result file"""
|
| 38 |
+
with open(json_filepath) as fp:
|
| 39 |
+
data = json.load(fp)
|
| 40 |
+
|
| 41 |
+
config = data.get("config")
|
| 42 |
+
|
| 43 |
+
# Precision
|
| 44 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
| 45 |
+
|
| 46 |
+
# Get model and org
|
| 47 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
| 48 |
+
org_and_model = org_and_model.split("/", 1)
|
| 49 |
+
|
| 50 |
+
if len(org_and_model) == 1:
|
| 51 |
+
org = None
|
| 52 |
+
model = org_and_model[0]
|
| 53 |
+
result_key = f"{model}_{precision.value.name}"
|
| 54 |
+
else:
|
| 55 |
+
org = org_and_model[0]
|
| 56 |
+
model = org_and_model[1]
|
| 57 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
| 58 |
+
full_model = "/".join(org_and_model)
|
| 59 |
+
|
| 60 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
| 62 |
+
)
|
| 63 |
+
architecture = "?"
|
| 64 |
+
if model_config is not None:
|
| 65 |
+
architectures = getattr(model_config, "architectures", None)
|
| 66 |
+
if architectures:
|
| 67 |
+
architecture = ";".join(architectures)
|
| 68 |
+
|
| 69 |
+
# Extract results available in this file (some results are split in several files)
|
| 70 |
+
results = {}
|
| 71 |
+
for task in Tasks:
|
| 72 |
+
task = task.value
|
| 73 |
+
|
| 74 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
| 75 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
| 76 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
mean_acc = np.mean(accs) * 100.0
|
| 80 |
+
results[task.benchmark] = mean_acc
|
| 81 |
+
|
| 82 |
+
return self(
|
| 83 |
+
eval_name=result_key,
|
| 84 |
+
full_model=full_model,
|
| 85 |
+
org=org,
|
| 86 |
+
model=model,
|
| 87 |
+
results=results,
|
| 88 |
+
precision=precision,
|
| 89 |
+
revision= config.get("model_sha", ""),
|
| 90 |
+
still_on_hub=still_on_hub,
|
| 91 |
+
architecture=architecture
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def update_with_request_file(self, requests_path):
|
| 95 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
| 96 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
with open(request_file, "r") as f:
|
| 100 |
+
request = json.load(f)
|
| 101 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 102 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 103 |
+
self.license = request.get("license", "?")
|
| 104 |
+
self.likes = request.get("likes", 0)
|
| 105 |
+
self.num_params = request.get("params", 0)
|
| 106 |
+
self.date = request.get("submitted_time", "")
|
| 107 |
+
except Exception:
|
| 108 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
| 109 |
+
|
| 110 |
+
def to_dict(self):
|
| 111 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 112 |
+
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 113 |
+
data_dict = {
|
| 114 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
| 115 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 116 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 117 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 118 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 119 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
| 120 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 121 |
+
AutoEvalColumn.revision.name: self.revision,
|
| 122 |
+
AutoEvalColumn.average.name: average,
|
| 123 |
+
AutoEvalColumn.license.name: self.license,
|
| 124 |
+
AutoEvalColumn.likes.name: self.likes,
|
| 125 |
+
AutoEvalColumn.params.name: self.num_params,
|
| 126 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
for task in Tasks:
|
| 130 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 131 |
+
|
| 132 |
+
return data_dict
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
| 136 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 137 |
+
request_files = os.path.join(
|
| 138 |
+
requests_path,
|
| 139 |
+
f"{model_name}_eval_request_*.json",
|
| 140 |
+
)
|
| 141 |
+
request_files = glob.glob(request_files)
|
| 142 |
+
|
| 143 |
+
# Select correct request file (precision)
|
| 144 |
+
request_file = ""
|
| 145 |
+
request_files = sorted(request_files, reverse=True)
|
| 146 |
+
for tmp_request_file in request_files:
|
| 147 |
+
with open(tmp_request_file, "r") as f:
|
| 148 |
+
req_content = json.load(f)
|
| 149 |
+
if (
|
| 150 |
+
req_content["status"] in ["FINISHED"]
|
| 151 |
+
and req_content["precision"] == precision.split(".")[-1]
|
| 152 |
+
):
|
| 153 |
+
request_file = tmp_request_file
|
| 154 |
+
return request_file
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
| 158 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
| 159 |
+
model_result_filepaths = []
|
| 160 |
+
|
| 161 |
+
for root, _, files in os.walk(results_path):
|
| 162 |
+
# We should only have json files in model results
|
| 163 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
# Sort the files by date
|
| 167 |
+
try:
|
| 168 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 169 |
+
except dateutil.parser._parser.ParserError:
|
| 170 |
+
files = [files[-1]]
|
| 171 |
+
|
| 172 |
+
for file in files:
|
| 173 |
+
model_result_filepaths.append(os.path.join(root, file))
|
| 174 |
+
|
| 175 |
+
eval_results = {}
|
| 176 |
+
for model_result_filepath in model_result_filepaths:
|
| 177 |
+
# Creation of result
|
| 178 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 179 |
+
eval_result.update_with_request_file(requests_path)
|
| 180 |
+
|
| 181 |
+
# Store results of same eval together
|
| 182 |
+
eval_name = eval_result.eval_name
|
| 183 |
+
if eval_name in eval_results.keys():
|
| 184 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 185 |
+
else:
|
| 186 |
+
eval_results[eval_name] = eval_result
|
| 187 |
+
|
| 188 |
+
results = []
|
| 189 |
+
for v in eval_results.values():
|
| 190 |
+
try:
|
| 191 |
+
v.to_dict() # we test if the dict version is complete
|
| 192 |
+
results.append(v)
|
| 193 |
+
except KeyError: # not all eval values present
|
| 194 |
+
continue
|
| 195 |
+
|
| 196 |
+
return results
|
src/populate.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
+
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
| 15 |
+
|
| 16 |
+
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 18 |
+
df = df[cols].round(decimals=2)
|
| 19 |
+
|
| 20 |
+
# filter out if any of the benchmarks have not been produced
|
| 21 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 22 |
+
return df
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 26 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 27 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 28 |
+
all_evals = []
|
| 29 |
+
|
| 30 |
+
for entry in entries:
|
| 31 |
+
if ".json" in entry:
|
| 32 |
+
file_path = os.path.join(save_path, entry)
|
| 33 |
+
with open(file_path) as fp:
|
| 34 |
+
data = json.load(fp)
|
| 35 |
+
|
| 36 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 37 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 38 |
+
|
| 39 |
+
all_evals.append(data)
|
| 40 |
+
elif ".md" not in entry:
|
| 41 |
+
# this is a folder
|
| 42 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
| 43 |
+
for sub_entry in sub_entries:
|
| 44 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
| 45 |
+
with open(file_path) as fp:
|
| 46 |
+
data = json.load(fp)
|
| 47 |
+
|
| 48 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 49 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 50 |
+
all_evals.append(data)
|
| 51 |
+
|
| 52 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 53 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 54 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 55 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 56 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 57 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 58 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/submission/check_validity.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from datetime import datetime, timedelta, timezone
|
| 6 |
+
|
| 7 |
+
import huggingface_hub
|
| 8 |
+
from huggingface_hub import ModelCard
|
| 9 |
+
from huggingface_hub.hf_api import ModelInfo
|
| 10 |
+
from transformers import AutoConfig
|
| 11 |
+
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 12 |
+
|
| 13 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 14 |
+
"""Checks if the model card and license exist and have been filled"""
|
| 15 |
+
try:
|
| 16 |
+
card = ModelCard.load(repo_id)
|
| 17 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
| 18 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
| 19 |
+
|
| 20 |
+
# Enforce license metadata
|
| 21 |
+
if card.data.license is None:
|
| 22 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
| 23 |
+
return False, (
|
| 24 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
| 25 |
+
" `license_name`/`license_link` pair."
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Enforce card content
|
| 29 |
+
if len(card.text) < 200:
|
| 30 |
+
return False, "Please add a description to your model card, it is too short."
|
| 31 |
+
|
| 32 |
+
return True, ""
|
| 33 |
+
|
| 34 |
+
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
| 35 |
+
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 36 |
+
try:
|
| 37 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 38 |
+
if test_tokenizer:
|
| 39 |
+
try:
|
| 40 |
+
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 41 |
+
except ValueError as e:
|
| 42 |
+
return (
|
| 43 |
+
False,
|
| 44 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
| 45 |
+
None
|
| 46 |
+
)
|
| 47 |
+
except Exception as e:
|
| 48 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
| 49 |
+
return True, None, config
|
| 50 |
+
|
| 51 |
+
except ValueError:
|
| 52 |
+
return (
|
| 53 |
+
False,
|
| 54 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 55 |
+
None
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return False, "was not found on hub!", None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
| 63 |
+
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
| 64 |
+
try:
|
| 65 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 66 |
+
except (AttributeError, TypeError):
|
| 67 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
| 68 |
+
|
| 69 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
| 70 |
+
model_size = size_factor * model_size
|
| 71 |
+
return model_size
|
| 72 |
+
|
| 73 |
+
def get_model_arch(model_info: ModelInfo):
|
| 74 |
+
"""Gets the model architecture from the configuration"""
|
| 75 |
+
return model_info.config.get("architectures", "Unknown")
|
| 76 |
+
|
| 77 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
| 78 |
+
"""Gather a list of already submitted models to avoid duplicates"""
|
| 79 |
+
depth = 1
|
| 80 |
+
file_names = []
|
| 81 |
+
users_to_submission_dates = defaultdict(list)
|
| 82 |
+
|
| 83 |
+
for root, _, files in os.walk(requested_models_dir):
|
| 84 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
| 85 |
+
if current_depth == depth:
|
| 86 |
+
for file in files:
|
| 87 |
+
if not file.endswith(".json"):
|
| 88 |
+
continue
|
| 89 |
+
with open(os.path.join(root, file), "r") as f:
|
| 90 |
+
info = json.load(f)
|
| 91 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
| 92 |
+
|
| 93 |
+
# Select organisation
|
| 94 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
| 95 |
+
continue
|
| 96 |
+
organisation, _ = info["model"].split("/")
|
| 97 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
| 98 |
+
|
| 99 |
+
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime, timezone
|
| 4 |
+
|
| 5 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
| 7 |
+
from src.submission.check_validity import (
|
| 8 |
+
already_submitted_models,
|
| 9 |
+
check_model_card,
|
| 10 |
+
get_model_size,
|
| 11 |
+
is_model_on_hub,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
REQUESTED_MODELS = None
|
| 15 |
+
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
+
|
| 17 |
+
def add_new_eval(
|
| 18 |
+
model: str,
|
| 19 |
+
base_model: str,
|
| 20 |
+
revision: str,
|
| 21 |
+
precision: str,
|
| 22 |
+
weight_type: str,
|
| 23 |
+
model_type: str,
|
| 24 |
+
):
|
| 25 |
+
global REQUESTED_MODELS
|
| 26 |
+
global USERS_TO_SUBMISSION_DATES
|
| 27 |
+
if not REQUESTED_MODELS:
|
| 28 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 29 |
+
|
| 30 |
+
user_name = ""
|
| 31 |
+
model_path = model
|
| 32 |
+
if "/" in model:
|
| 33 |
+
user_name = model.split("/")[0]
|
| 34 |
+
model_path = model.split("/")[1]
|
| 35 |
+
|
| 36 |
+
precision = precision.split(" ")[0]
|
| 37 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 38 |
+
|
| 39 |
+
if model_type is None or model_type == "":
|
| 40 |
+
return styled_error("Please select a model type.")
|
| 41 |
+
|
| 42 |
+
# Does the model actually exist?
|
| 43 |
+
if revision == "":
|
| 44 |
+
revision = "main"
|
| 45 |
+
|
| 46 |
+
# Is the model on the hub?
|
| 47 |
+
if weight_type in ["Delta", "Adapter"]:
|
| 48 |
+
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 49 |
+
if not base_model_on_hub:
|
| 50 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
| 51 |
+
|
| 52 |
+
if not weight_type == "Adapter":
|
| 53 |
+
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 54 |
+
if not model_on_hub:
|
| 55 |
+
return styled_error(f'Model "{model}" {error}')
|
| 56 |
+
|
| 57 |
+
# Is the model info correctly filled?
|
| 58 |
+
try:
|
| 59 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
| 60 |
+
except Exception:
|
| 61 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
| 62 |
+
|
| 63 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 64 |
+
|
| 65 |
+
# Were the model card and license filled?
|
| 66 |
+
try:
|
| 67 |
+
license = model_info.cardData["license"]
|
| 68 |
+
except Exception:
|
| 69 |
+
return styled_error("Please select a license for your model")
|
| 70 |
+
|
| 71 |
+
modelcard_OK, error_msg = check_model_card(model)
|
| 72 |
+
if not modelcard_OK:
|
| 73 |
+
return styled_error(error_msg)
|
| 74 |
+
|
| 75 |
+
# Seems good, creating the eval
|
| 76 |
+
print("Adding new eval")
|
| 77 |
+
|
| 78 |
+
eval_entry = {
|
| 79 |
+
"model": model,
|
| 80 |
+
"base_model": base_model,
|
| 81 |
+
"revision": revision,
|
| 82 |
+
"precision": precision,
|
| 83 |
+
"weight_type": weight_type,
|
| 84 |
+
"status": "PENDING",
|
| 85 |
+
"submitted_time": current_time,
|
| 86 |
+
"model_type": model_type,
|
| 87 |
+
"likes": model_info.likes,
|
| 88 |
+
"params": model_size,
|
| 89 |
+
"license": license,
|
| 90 |
+
"private": False,
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Check for duplicate submission
|
| 94 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 95 |
+
return styled_warning("This model has been already submitted.")
|
| 96 |
+
|
| 97 |
+
print("Creating eval file")
|
| 98 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 99 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
| 100 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
| 101 |
+
|
| 102 |
+
with open(out_path, "w") as f:
|
| 103 |
+
f.write(json.dumps(eval_entry))
|
| 104 |
+
|
| 105 |
+
print("Uploading eval file")
|
| 106 |
+
API.upload_file(
|
| 107 |
+
path_or_fileobj=out_path,
|
| 108 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
| 109 |
+
repo_id=QUEUE_REPO,
|
| 110 |
+
repo_type="dataset",
|
| 111 |
+
commit_message=f"Add {model} to eval queue",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Remove the local file
|
| 115 |
+
os.remove(out_path)
|
| 116 |
+
|
| 117 |
+
return styled_message(
|
| 118 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
| 119 |
+
)
|