DataEngEval / app.py
uparekh01151's picture
feat: add Groq provider models and show provider info in UI
05dfa56
"""
DataEngEval - Hugging Face Spaces App
Main application for the Hugging Face Space deployment.
"""
import gradio as gr
import pandas as pd
import os
import time
from typing import List, Dict, Any, Optional
import sys
# Add src to path for imports
sys.path.append('src')
from evaluator import evaluator, DatasetManager
from models_registry import models_registry
from scoring import scoring_engine
from utils.config_loader import config_loader
class LeaderboardManager:
"""Manages the leaderboard persistence and display."""
def __init__(self):
self.config = config_loader.get_leaderboard_config()
self.leaderboard_path = self.config.path
self.leaderboard = self._load_leaderboard()
def _load_leaderboard(self) -> pd.DataFrame:
"""Load existing leaderboard or create new one."""
if os.path.exists(self.leaderboard_path):
try:
return pd.read_parquet(self.leaderboard_path)
except Exception as e:
print(f"Error loading leaderboard: {e}")
# Create empty leaderboard using config
return pd.DataFrame(columns=self.config.columns)
def add_result(self, result: Dict[str, Any]):
"""Add a new result to the leaderboard."""
new_row = pd.DataFrame([result])
self.leaderboard = pd.concat([self.leaderboard, new_row], ignore_index=True)
self._save_leaderboard()
def _save_leaderboard(self):
"""Save leaderboard to parquet file."""
try:
self.leaderboard.to_parquet(self.leaderboard_path, index=False)
except Exception as e:
print(f"Error saving leaderboard: {e}")
def get_leaderboard(self) -> pd.DataFrame:
"""Get the current leaderboard."""
return self.leaderboard.copy()
def get_top_results(self, n: int = None) -> pd.DataFrame:
"""Get top N results by composite score, aggregated by model."""
if self.leaderboard.empty:
return self.leaderboard
if n is None:
n = self.config.top_results
# Group by model and calculate averages
numeric_columns = ['composite_score', 'correctness_exact', 'result_match_f1', 'exec_success', 'latency_ms']
# Calculate averages for numeric columns, keeping provider info
model_aggregated = self.leaderboard.groupby(['model_name', 'provider'])[numeric_columns].mean().reset_index()
# Create combined model name with provider
model_aggregated['model_display'] = model_aggregated['model_name'] + ' (' + model_aggregated['provider'] + ')'
# Sort by composite score (descending) to get proper ranking
model_aggregated = model_aggregated.sort_values('composite_score', ascending=False).reset_index(drop=True)
# Take top N results
top_results = model_aggregated.head(n).copy()
# Add ranking column (1-based ranking)
top_results.insert(0, 'rank', range(1, len(top_results) + 1))
# Reorder columns according to configuration
leaderboard_config = config_loader.get_leaderboard_config()
column_mapping = {
'Rank': 'rank',
'Model': 'model_display',
'Composite Score': 'composite_score',
'Correctness': 'correctness_exact',
'Result F1': 'result_match_f1',
'Exec Success': 'exec_success',
'Latency': 'latency_ms',
'Dataset': 'dataset_name',
'Case ID': 'case_id',
'Question': 'question',
'Reference SQL': 'reference_sql',
'Generated SQL': 'candidate_sql',
'Dialect OK': 'dialect_ok'
}
# Select and reorder columns
ordered_columns = []
for header in leaderboard_config.results_table_headers:
if header in column_mapping and column_mapping[header] in top_results.columns:
ordered_columns.append(column_mapping[header])
return top_results[ordered_columns]
# Global instances
leaderboard_manager = LeaderboardManager()
dataset_manager = DatasetManager()
def load_prompt_template(dialect: str) -> str:
"""Load prompt template for a specific dialect."""
prompts_config = config_loader.get_prompts_config()
# Get template file path from config
template_path = prompts_config.files.get(dialect.lower())
if template_path and os.path.exists(template_path):
with open(template_path, 'r') as f:
return f.read()
else:
# Use fallback template from config
return prompts_config.fallback.format(dialect=dialect)
def get_available_datasets() -> List[str]:
"""Get list of available datasets."""
# Get all available datasets
all_datasets = dataset_manager.get_datasets()
print(f"All available datasets: {list(all_datasets.keys())}")
# Filter to only show visible datasets from config
visible_datasets = config_loader.get_visible_datasets()
print(f"Visible datasets from config: {visible_datasets}")
# Return only datasets that are both available and visible
result = [name for name in all_datasets.keys() if name in visible_datasets]
print(f"Final available datasets: {result}")
return result
def get_available_models() -> List[str]:
"""Get list of available models."""
models = models_registry.get_models()
return [model.name for model in models]
def get_available_dialects() -> List[str]:
"""Get list of available SQL dialects."""
return config_loader.get_dialects()
def handle_model_selection(selected_models: List[str]) -> List[str]:
"""Handle model selection including 'Select All' functionality."""
if not selected_models:
return []
# If "Select All" is selected, return all available models
if "Select All" in selected_models:
return get_available_models()
# Otherwise, return the selected models (excluding "Select All" if it's there)
return [model for model in selected_models if model != "Select All"]
def get_cases_for_dataset(dataset_name: str) -> List[str]:
"""Get list of cases for a dataset."""
if not dataset_name:
return []
try:
print(f"Loading cases for dataset: {dataset_name}")
# Check if dataset exists
dataset = dataset_manager.get_dataset(dataset_name)
if not dataset:
print(f"Dataset {dataset_name} not found!")
print(f"Available datasets: {list(dataset_manager.get_datasets().keys())}")
return []
print(f"Dataset found: {dataset.name}")
print(f"Cases path: {dataset.cases_path}")
cases = dataset_manager.load_cases(dataset_name)
print(f"Loaded {len(cases)} cases")
for i, case in enumerate(cases):
print(f" Case {i+1}: {case.id} - {case.question[:50]}...")
return [f"{case.id}: {case.question[:50]}..." for case in cases]
except Exception as e:
print(f"Error loading cases for {dataset_name}: {e}")
import traceback
traceback.print_exc()
return []
def run_evaluation(dataset_name: str, dialect: str, case_selection: str,
selected_models: List[str]) -> tuple:
"""Run evaluation for selected models on a case."""
if not all([dataset_name, dialect, case_selection, selected_models]):
return "Please select all required options.", None, None, None
# Handle model selection (including "Select All" functionality)
selected_models = handle_model_selection(selected_models)
if not selected_models:
return "Please select at least one model to evaluate.", None, None, None
# Get environment config
env_config = config_loader.get_environment_config()
has_hf_token = bool(os.getenv(env_config["hf_token_env"]))
if not has_hf_token:
print("🏠 No HF_TOKEN detected, using mock mode for demo purposes")
# Extract case ID from selection
case_id = case_selection.split(":")[0] if ":" in case_selection else case_selection
# Load prompt template
prompt_template = load_prompt_template(dialect)
# Get metrics config for formatting
metrics_config = config_loader.get_metrics_config()
formatting = metrics_config.formatting
results = []
detailed_results = []
for model_name in selected_models:
try:
print(f"Evaluating {model_name} on {dataset_name}/{case_id} ({dialect})")
result = evaluator.evaluate_model_on_case(
model_name, dataset_name, case_id, dialect, prompt_template
)
# Add to leaderboard
leaderboard_manager.add_result(result)
# Format for display using config
results.append([
len(results) + 1, # Rank (1-based)
f"{model_name} ({result['provider']})", # Include provider in model name
formatting["composite_score"].format(result['composite_score']),
formatting["correctness_exact"].format(result['correctness_exact']),
formatting["result_match_f1"].format(result['result_match_f1']),
formatting["exec_success"].format(result['exec_success']),
formatting["latency_ms"].format(result['latency_ms']),
result['dataset_name'],
result['case_id'],
result['question'][:100] + "..." if len(result['question']) > 100 else result['question'],
result['reference_sql'][:100] + "..." if len(result['reference_sql']) > 100 else result['reference_sql'],
result['candidate_sql'][:100] + "..." if len(result['candidate_sql']) > 100 else result['candidate_sql'],
formatting["dialect_ok"].format(result['dialect_ok'])
])
detailed_results.append(f"""
**Model: {model_name}**
- **Question:** {result['question']}
- **Reference SQL:** ```sql
{result['reference_sql']}
```
- **Generated SQL:** ```sql
{result['candidate_sql']}
```
- **Composite Score:** {formatting["composite_score"].format(result['composite_score'])}
- **Correctness (Exact):** {formatting["correctness_exact"].format(result['correctness_exact'])}
- **Execution Success:** {formatting["exec_success"].format(result['exec_success'])}
- **Result Match F1:** {formatting["result_match_f1"].format(result['result_match_f1'])}
- **Latency:** {formatting["latency_ms"].format(result['latency_ms'])}
- **Dialect Compliance:** {formatting["dialect_ok"].format(result['dialect_ok'])}
---
""")
except Exception as e:
error_msg = f"Error evaluating {model_name}: {str(e)}"
print(error_msg)
results.append([len(results) + 1, model_name, "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR", "ERROR"])
detailed_results.append(f"**Error with {model_name}:** {error_msg}\n\n---\n")
# Create results DataFrame using config
leaderboard_config = config_loader.get_leaderboard_config()
results_df = pd.DataFrame(results, columns=leaderboard_config.results_table_headers)
# Get updated leaderboard
leaderboard_df = leaderboard_manager.get_top_results(20)
return (
f"Evaluation completed! Processed {len(selected_models)} models.",
results_df,
"\n".join(detailed_results),
leaderboard_df
)
def get_leaderboard_display() -> pd.DataFrame:
"""Get the current leaderboard for display."""
leaderboard_config = config_loader.get_leaderboard_config()
leaderboard_data = leaderboard_manager.get_top_results(leaderboard_config.top_results)
# The get_top_results method already filters columns according to configuration
# This ensures consistency with the Results table in the Evaluate tab
return leaderboard_data
# Create Gradio interface
def create_interface():
"""Create the Gradio interface."""
# Get app configuration
app_config = config_loader.get_app_config()
ui_config = config_loader.get_ui_config()
with gr.Blocks(title=app_config.title, theme=getattr(gr.themes, app_config.theme.capitalize())()) as app:
gr.Markdown(f"""
# {app_config.title}
{app_config.description}
Select a dataset, dialect, and test case, then choose models to evaluate. Results are automatically added to the public leaderboard.
**Note**: This Hugging Face Space uses remote inference - no heavy models are downloaded locally!
""")
with gr.Row():
with gr.Column(scale=10):
pass # Empty column for spacing
with gr.Column(scale=1):
refresh_button = gr.Button(
ui_config["buttons"]["refresh"]["text"],
variant=ui_config["buttons"]["refresh"]["variant"],
size=ui_config["buttons"]["refresh"]["size"]
)
with gr.Tabs():
# Evaluation Tab
with gr.Tab(ui_config["tabs"][0]["label"]):
with gr.Row():
with gr.Column(scale=1):
dataset_dropdown = gr.Dropdown(
choices=get_available_datasets(),
label=ui_config["inputs"]["dataset"]["label"],
value=get_available_datasets()[0] if get_available_datasets() else None
)
dialect_dropdown = gr.Dropdown(
choices=get_available_dialects(),
label=ui_config["inputs"]["dialect"]["label"],
value=ui_config["inputs"]["dialect"]["default"]
)
# Initialize cases for default dataset
default_dataset = get_available_datasets()[0] if get_available_datasets() else None
initial_cases = []
if default_dataset:
print(f"Initializing cases for default dataset: {default_dataset}")
initial_cases = get_cases_for_dataset(default_dataset)
print(f"Initialized {len(initial_cases)} cases")
case_dropdown = gr.Dropdown(
choices=initial_cases,
label=ui_config["inputs"]["case"]["label"],
interactive=True,
value=initial_cases[0] if initial_cases else None
)
models_checkbox = gr.CheckboxGroup(
choices=["Select All"] + get_available_models(),
label=ui_config["inputs"]["models"]["label"],
value=[]
)
run_button = gr.Button(
ui_config["buttons"]["run_evaluation"]["text"],
variant=ui_config["buttons"]["run_evaluation"]["variant"]
)
with gr.Column(scale=2):
status_output = gr.Textbox(label=ui_config["outputs"]["status"]["label"], interactive=False)
results_table = gr.Dataframe(
label=ui_config["outputs"]["results"]["label"],
headers=ui_config["outputs"]["results"]["headers"],
interactive=False
)
detailed_results = gr.Markdown(label=ui_config["outputs"]["detailed"]["label"])
# Event handlers
def update_cases(dataset_name):
print(f"update_cases called with dataset_name: {dataset_name}")
cases = get_cases_for_dataset(dataset_name)
print(f"update_cases returning {len(cases)} cases")
return gr.Dropdown(choices=cases, value=cases[0] if cases else None)
dataset_dropdown.change(
fn=update_cases,
inputs=[dataset_dropdown],
outputs=[case_dropdown]
)
run_button.click(
fn=run_evaluation,
inputs=[dataset_dropdown, dialect_dropdown, case_dropdown, models_checkbox],
outputs=[status_output, results_table, detailed_results, gr.State()]
)
# Leaderboard Tab
with gr.Tab(ui_config["tabs"][1]["label"]):
# Get leaderboard data with same column filtering as Results table
leaderboard_data = get_leaderboard_display()
leaderboard_table = gr.Dataframe(
label=ui_config["outputs"]["leaderboard"]["label"],
interactive=False,
value=leaderboard_data,
headers=ui_config["outputs"]["results"]["headers"]
)
# Info Tab
with gr.Tab(ui_config["tabs"][2]["label"]):
gr.Markdown("""
## About DataEngEval
This platform evaluates natural language to SQL generation across multiple dialects and datasets using Hugging Face Spaces.
### Features
- **Multi-dialect support**: Presto, BigQuery, Snowflake
- **Config-driven models**: Add new models by editing `config/models.yaml`
- **Multiple datasets**: NYC Taxi (with more coming)
- **Comprehensive metrics**: Correctness, execution success, result matching, latency
- **Public leaderboard**: Track performance across models and datasets
- **Remote inference**: No heavy model downloads - uses Hugging Face Inference API
### Adding New Models
1. Edit `config/models.yaml`
2. Add your model configuration with provider, model_id, and parameters
3. Supported providers: `huggingface`
### Adding New Datasets
1. Create a new folder under `tasks/`
2. Add `schema.sql`, `loader.py`, and `cases.yaml`
3. The loader should create a DuckDB database with sample data
4. Cases should include questions and reference SQL for each dialect
### Scoring
The composite score combines:
- **Correctness (40%)**: Exact match with reference results
- **Execution Success (25%)**: SQL executes without errors
- **Result Match F1 (15%)**: Partial credit for similar results
- **Dialect Compliance (10%)**: Proper SQL transpilation
- **Readability (5%)**: SQL structure and formatting
- **Latency (5%)**: Response time (normalized)
### Hugging Face Spaces Deployment
This app is optimized for Hugging Face Spaces:
- Uses remote inference via Hugging Face Inference API
- No local model downloads required
- Lightweight dependencies
- Automatic deployment from Git
### Environment Variables
- `HF_TOKEN`: Hugging Face API token (optional - if not set, uses mock mode)
- `MOCK_MODE`: Set to "true" to force mock mode
""")
# Add refresh button click event
refresh_button.click(
fn=get_leaderboard_display,
outputs=[leaderboard_table]
)
return app
if __name__ == "__main__":
app = create_interface()
app_config = config_loader.get_app_config()
app.launch(
server_name=app_config.server_host,
server_port=app_config.server_port,
share=app_config.server_share
)