Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system('pip install git+https://github.com/huggingface/transformers --upgrade')
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import requests
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
|
| 12 |
+
feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-medium")
|
| 13 |
+
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-medium")
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
model.to(device)
|
| 16 |
+
|
| 17 |
+
# load image examples
|
| 18 |
+
urls = ['https://i.imgflip.com/4/4t0m5.jpg',
|
| 19 |
+
'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-2-orig.png',
|
| 20 |
+
'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-29-orig.png',
|
| 21 |
+
'https://cdn.openai.com/image-gpt/completions/igpt-xl-openai-cooking-0-orig.png'
|
| 22 |
+
]
|
| 23 |
+
for idx, url in enumerate(urls):
|
| 24 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 25 |
+
image.save(f"image_{idx}.png")
|
| 26 |
+
|
| 27 |
+
def process_image(image):
|
| 28 |
+
# prepare 7 images, shape (7, 1024)
|
| 29 |
+
batch_size = 7
|
| 30 |
+
encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt")
|
| 31 |
+
|
| 32 |
+
# create primers
|
| 33 |
+
samples = encoding.input_ids.numpy()
|
| 34 |
+
n_px = feature_extractor.size
|
| 35 |
+
clusters = feature_extractor.clusters
|
| 36 |
+
n_px_crop = 16
|
| 37 |
+
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
|
| 38 |
+
|
| 39 |
+
# get conditioned image (from first primer tensor), padded with black pixels to be 32x32
|
| 40 |
+
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8)
|
| 41 |
+
primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant")
|
| 42 |
+
|
| 43 |
+
# generate (no beam search)
|
| 44 |
+
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
|
| 45 |
+
context = torch.tensor(context).to(device)
|
| 46 |
+
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
|
| 47 |
+
|
| 48 |
+
# decode back to images (convert color cluster tokens back to pixels)
|
| 49 |
+
samples = output[:,1:].cpu().detach().numpy()
|
| 50 |
+
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
|
| 51 |
+
|
| 52 |
+
samples_img = [primers_img] + samples_img
|
| 53 |
+
|
| 54 |
+
# stack images horizontally
|
| 55 |
+
row1 = np.hstack(samples_img[:4])
|
| 56 |
+
row2 = np.hstack(samples_img[4:])
|
| 57 |
+
result = np.vstack([row1, row2])
|
| 58 |
+
|
| 59 |
+
# return as PIL Image
|
| 60 |
+
completion = Image.fromarray(result)
|
| 61 |
+
|
| 62 |
+
return completion
|
| 63 |
+
|
| 64 |
+
title = "Interactive demo: ImageGPT"
|
| 65 |
+
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
| 66 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
| 67 |
+
examples =[f"image_{idx}.png" for idx in range(len(urls))]
|
| 68 |
+
|
| 69 |
+
iface = gr.Interface(fn=process_image,
|
| 70 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 71 |
+
outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
|
| 72 |
+
title=title,
|
| 73 |
+
description=description,
|
| 74 |
+
article=article,
|
| 75 |
+
examples=examples,
|
| 76 |
+
enable_queue=True)
|
| 77 |
+
iface.launch(debug=True)
|