Spaces:
Runtime error
Runtime error
refactor the code for better scalability and update tsac naming to sentiment analysis, adding madar dataset for transliteration and normalization eval
bde1c71
| import json | |
| import os | |
| import time | |
| import traceback | |
| from datetime import datetime, timezone | |
| from src.display.formatting import styled_error, styled_message, styled_warning | |
| from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
| from src.submission.check_validity import ( | |
| already_submitted_models, | |
| check_model_card, | |
| get_model_size, | |
| is_model_on_hub, | |
| ) | |
| from src.evaluators.evaluate import EvaluationStatus | |
| REQUESTED_MODELS = None | |
| USERS_TO_SUBMISSION_DATES = None | |
| def _create_eval_request( | |
| model: str, | |
| base_model: str, | |
| revision: str, | |
| precision: str, | |
| weight_type: str, | |
| model_type: str, | |
| model_info: dict, | |
| ): | |
| """ | |
| Creates and uploads a JSON file for a new model evaluation request. | |
| This function is a helper for add_new_eval and should not be called directly. | |
| """ | |
| try: | |
| request_data = { | |
| 'model': model, | |
| 'base_model': base_model, | |
| 'revision': revision, | |
| 'precision': precision, | |
| 'weight_type': weight_type, | |
| 'model_type': model_type, | |
| 'status': EvaluationStatus.PENDING.value, | |
| 'submitted_time': datetime.now(timezone.utc).isoformat(), | |
| 'likes': model_info.likes, | |
| 'params': get_model_size(model_info, precision), | |
| 'license': model_info.cardData.get("license"), | |
| 'private': model_info.private, | |
| } | |
| user_name = model.split('/')[0] if '/' in model else 'unknown' | |
| safe_revision = revision.replace('/', '_') | |
| request_filename = f"{model.replace('/', '_')}_eval_request_{safe_revision}_{precision}_{weight_type}.json" | |
| local_dir = os.path.join(EVAL_REQUESTS_PATH, user_name) | |
| os.makedirs(local_dir, exist_ok=True) | |
| local_path = os.path.join(local_dir, request_filename) | |
| print(f"Creating local evaluation request file: {local_path}") | |
| # Use a try-finally block to ensure the local file is always removed | |
| try: | |
| with open(local_path, 'w') as f: | |
| print(request_data) | |
| json.dump(request_data, f, indent=2) | |
| # Upload the request file to the Hugging Face queue repository | |
| print(f"Uploading evaluation request to {QUEUE_REPO}") | |
| path_in_repo = os.path.join(user_name, request_filename) | |
| print(path_in_repo) | |
| print(local_path) | |
| API.upload_file( | |
| path_or_fileobj=local_path, | |
| path_in_repo=path_in_repo, | |
| repo_id=QUEUE_REPO, | |
| repo_type="dataset", | |
| commit_message=f"Add evaluation request for {model}", | |
| token=TOKEN | |
| ) | |
| print(f"Uploaded successfully to {path_in_repo} in {QUEUE_REPO}") | |
| return styled_message( | |
| "Evaluation request created successfully! Please wait for the evaluation to complete." | |
| ) | |
| finally: | |
| if os.path.exists(local_path): | |
| os.remove(local_path) | |
| print(f"Local file {local_path} removed.") | |
| except Exception as e: | |
| print(f"Error creating or uploading evaluation request: {str(e)}") | |
| print(f"Full traceback:\n{traceback.format_exc()}") | |
| return styled_error(f"Failed to create evaluation request: {str(e)}") | |
| def add_new_eval(model: str, base_model: str, revision: str, precision: str, weight_type: str, model_type: str): | |
| """ | |
| Validates a model and creates an evaluation request for it. | |
| This is the main function to be called by the user. | |
| """ | |
| try: | |
| print("\n=== Starting Evaluation Submission ===") | |
| print(f"Submission time: {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC") | |
| print(f"Model: {model}, Base: {base_model}, Revision: {revision}, Precision: {precision}") | |
| precision = precision.split(" ")[0] | |
| if not revision: | |
| revision = "main" | |
| print("Using default revision: main") | |
| # --- Step 1: Check for existing submissions --- | |
| print("\n=== Checking for existing submissions ===") | |
| global REQUESTED_MODELS | |
| global USERS_TO_SUBMISSION_DATES | |
| start_time = time.time() | |
| REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
| print(f"Cache refresh completed in {time.time() - start_time:.2f} seconds. Found {len(REQUESTED_MODELS)} existing submissions.") | |
| model_key = f"{model}_{revision}_{precision}" | |
| if model_key in REQUESTED_MODELS: | |
| queue_file_path = REQUESTED_MODELS[model_key] | |
| try: | |
| with open(queue_file_path, 'r') as f: | |
| queue_entry = json.load(f) | |
| status = queue_entry.get('status') | |
| if status is not None and status != EvaluationStatus.FAILED.value: | |
| return styled_warning(f"This model has already been submitted and is in a '{status}' status.") | |
| except Exception as e: | |
| print(f"Error reading queue file: {e}") | |
| print(f"Full traceback:\n{traceback.format_exc()}") | |
| return styled_warning("Error checking model status. Please try again later.") | |
| print(f"No existing submission found for key: {model_key} or previous submission had a FAILED status.") | |
| # --- Step 2: Validate model type and existence on the Hub --- | |
| print("\n=== Validating model existence and card === ") | |
| if not model_type: | |
| return styled_error("Please select a model type.") | |
| try: | |
| # Validate the base model first for delta/adapter weights | |
| if weight_type in ["Delta", "Adapter"]: | |
| print(f"Checking base model '{base_model}' on Hugging Face...") | |
| base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN) | |
| if not base_model_on_hub: | |
| return styled_error(f'Base model "{base_model}" was not found on the Hugging Face Hub: {error}') | |
| # Validate the main model | |
| print(f"Checking model '{model}' on Hugging Face...") | |
| model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN) | |
| if not model_on_hub: | |
| return styled_error(f'Model "{model}" was not found on the Hugging Face Hub: {error}') | |
| # Get model information and validate the model card and license | |
| model_info = API.model_info(repo_id=model, revision=revision) | |
| model_card_ok, error_msg = check_model_card(model) | |
| if not model_card_ok: | |
| return styled_error(error_msg) | |
| if "license" not in model_info.cardData: | |
| return styled_error("Please select a license for your model in its model card.") | |
| except Exception as e: | |
| print(f"Error during model validation: {e}") | |
| print(f"Full traceback:\n{traceback.format_exc()}") | |
| return styled_error(f"Failed to validate model on Hugging Face: {str(e)}") | |
| # --- Step 3: Create the evaluation request --- | |
| print("\n=== Creating and uploading evaluation request ===") | |
| # This function encapsulates the file creation and upload logic. | |
| return _create_eval_request( | |
| model=model, | |
| base_model=base_model, | |
| revision=revision, | |
| precision=precision, | |
| weight_type=weight_type, | |
| model_type=model_type, | |
| model_info=model_info, | |
| ) | |
| except Exception as e: | |
| print(f"An unexpected error occurred during submission: {e}") | |
| print(f"Full traceback:\n{traceback.format_exc()}") | |
| return styled_error(f"An unexpected error occurred during submission: {str(e)}") | |