Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import pandas as pd | |
| from datetime import datetime, timedelta | |
| import dateutil | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumn, EvalQueueColumn, ModelType, Tasks, Precision, WeightType | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| raw_data = get_raw_eval_results(results_path, requests_path) | |
| # print(raw_data) | |
| all_data_json = [v.to_dict() for v in raw_data] | |
| df = pd.DataFrame.from_records(all_data_json) | |
| # print(df) | |
| if df.empty: | |
| print("No evaluation results found. Returning empty DataFrame with correct columns.") | |
| return pd.DataFrame(columns=cols) | |
| df = df.sort_values(by=[AutoEvalColumn().average.name], ascending=False) | |
| df = df[cols].round(decimals=4) | |
| df = df[has_no_nan_values(df, benchmark_cols)] | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requestes""" | |
| all_evals = [] | |
| # Define a threshold to identify "stuck" jobs | |
| time_threshold = datetime.now() - timedelta(hours=1) | |
| # Use os.walk for a robust way to find all files recursively | |
| for root, _, files in os.walk(save_path): | |
| for filename in files: | |
| if filename.endswith(".json"): | |
| file_path = os.path.join(root, filename) | |
| try: | |
| with open(file_path, "r") as fp: | |
| data = json.load(fp) | |
| # Check for "stuck" jobs | |
| if data.get("status") == "RUNNING": | |
| submitted_time_str = data.get("submitted_at") | |
| if submitted_time_str: | |
| submitted_time = dateutil.parser.isoparse(submitted_time_str) | |
| if submitted_time < time_threshold: | |
| print(f"Stuck job detected for {data['model']}. Changing status to PENDING.") | |
| data["status"] = "PENDING" | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| except Exception as e: | |
| print(f"Error processing file {file_path}: {e}") | |
| continue | |
| pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| df_pending = pd.DataFrame.from_records(pending_list, columns=cols) if pending_list else pd.DataFrame(columns=cols) | |
| df_running = pd.DataFrame.from_records(running_list, columns=cols) if running_list else pd.DataFrame(columns=cols) | |
| df_finished = pd.DataFrame.from_records(finished_list, columns=cols) if finished_list else pd.DataFrame(columns=cols) | |
| return df_finished[cols], df_running[cols], df_pending[cols] | |