File size: 12,048 Bytes
bde1c71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
## πŸ—ΊοΈ Tunisian NLP Leaderboard Roadmap

### πŸ“Œ Phase 1: Dataset Acquisition & Preparation

#### 1. **Sentiment Analysis**

* **Existing Dataset**: **TUNIZI**

  * **Description**: A large dataset containing 100,000 Tunisian Arabizi comments annotated as positive, negative, or neutral.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Utilize this dataset to evaluate models' performance in sentiment classification tasks.

#### 2. **Named Entity Recognition (NER)**

* **Existing Dataset**: **ArabNER**

  * **Description**: A comprehensive Arabic NER corpus that can be adapted for Tunisian dialects.
  * **Source**: [ResearchGate](https://www.researchgate.net/publication/374279027_Named_Entity_Recognition_of_Tunisian_Arabic_Using_the_Bi-LSTM-CRF_Model)

* **Usage**: Fine-tune models on this dataset to assess their ability to recognize entities in Tunisian Arabic text.

#### 3. **Corpus Coverage**

* **Existing Dataset**: **Tunisian Dialect Corpus**

  * **Description**: A sizable collection of Tunisian dialect texts, useful for assessing vocabulary coverage.
  * **Source**: [Hugging Face](https://huggingface.co/collections/tunis-ai/arabic-datasets-66344cf0df31dc81eb1dcf55)

* **Usage**: Evaluate models' coverage of the Tunisian dialect vocabulary using this corpus.

#### 4. **Arabizi Robustness**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Since it's in Arabizi, it can also serve to evaluate models' robustness to this writing style.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' robustness to Arabizi by evaluating their performance on this dataset.

#### 5. **Code-Switching**

* **Existing Dataset**: **TunSwitch**

  * **Description**: A dataset of code-switched Tunisian Arabic speech, valuable for training and evaluating models on code-switching tasks.
  * **Source**: [Zenodo](https://zenodo.org/records/8342762)

* **Usage**: Evaluate models' ability to handle code-switching between Tunisian Arabic and other languages using this dataset.

#### 6. **Typo Robustness**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Its informal nature includes typographical variations, making it suitable for evaluating models' tolerance to typos.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' robustness to typographical errors by evaluating their performance on this dataset.

#### 7. **Zero-Shot Transfer**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Can be used to test models' ability to generalize to tasks they weren't explicitly trained on.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Evaluate models' zero-shot transfer capabilities by assessing their performance on this dataset.

#### 8. **Domain Shift**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Its diverse sources provide a foundation for testing domain adaptation capabilities.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' ability to adapt to different domains by evaluating their performance on this dataset.

---

### πŸ§ͺ Phase 2: Metric Development & Evaluation Tasks

For each task, define the evaluation metric and the corresponding dataset:

| Task                     | Metric                  | Dataset                                                                                                                               |
| ------------------------ | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| Sentiment Analysis       | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Named Entity Recognition | F1 Score                | [ArabNER](https://www.researchgate.net/publication/374279027_Named_Entity_Recognition_of_Tunisian_Arabic_Using_the_Bi-LSTM-CRF_Model) |
| Corpus Coverage          | Vocabulary Coverage (%) | [Tunisian Dialect Corpus](https://huggingface.co/collections/tunis-ai/arabic-datasets-66344cf0df31dc81eb1dcf55)                       |
| Arabizi Robustness       | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Code-Switching           | Accuracy / F1 Score     | [TunSwitch](https://zenodo.org/records/8342762)                                                                                       |
| Typo Robustness          | Accuracy / F1 Score     | [TUNIZI]([https://k4all.org/project/database-tunisian](https://k4all.org/project/database-tunisian)                                   |


Certainly! Here's a comprehensive roadmap to guide you through enhancing your **TunisianEncoderModelsLeaderboard** project, focusing on dataset acquisition, metric development, and evaluation tasks.

---

## πŸ—ΊοΈ Tunisian NLP Leaderboard Roadmap

### πŸ“Œ Phase 1: Dataset Acquisition & Preparation

#### 1. **Sentiment Analysis**

* **Existing Dataset**: **TUNIZI**

  * **Description**: A large dataset containing 100,000 Tunisian Arabizi comments annotated as positive, negative, or neutral.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Utilize this dataset to evaluate models' performance in sentiment classification tasks.

#### 2. **Named Entity Recognition (NER)**

* **Existing Dataset**: **ArabNER**

  * **Description**: A comprehensive Arabic NER corpus that can be adapted for Tunisian dialects.
  * **Source**: [ResearchGate](https://www.researchgate.net/publication/374279027_Named_Entity_Recognition_of_Tunisian_Arabic_Using_the_Bi-LSTM-CRF_Model)

* **Usage**: Fine-tune models on this dataset to assess their ability to recognize entities in Tunisian Arabic text.

#### 3. **Corpus Coverage**

* **Existing Dataset**: **Tunisian Dialect Corpus**

  * **Description**: A sizable collection of Tunisian dialect texts, useful for assessing vocabulary coverage.
  * **Source**: [Hugging Face](https://huggingface.co/collections/tunis-ai/arabic-datasets-66344cf0df31dc81eb1dcf55)

* **Usage**: Evaluate models' coverage of the Tunisian dialect vocabulary using this corpus.

#### 4. **Arabizi Robustness**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Since it's in Arabizi, it can also serve to evaluate models' robustness to this writing style.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' robustness to Arabizi by evaluating their performance on this dataset.

#### 5. **Code-Switching**

* **Existing Dataset**: **TunSwitch**

  * **Description**: A dataset of code-switched Tunisian Arabic speech, valuable for training and evaluating models on code-switching tasks.
  * **Source**: [Zenodo](https://zenodo.org/records/8342762)

* **Usage**: Evaluate models' ability to handle code-switching between Tunisian Arabic and other languages using this dataset.

#### 6. **Typo Robustness**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Its informal nature includes typographical variations, making it suitable for evaluating models' tolerance to typos.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' robustness to typographical errors by evaluating their performance on this dataset.

#### 7. **Zero-Shot Transfer**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Can be used to test models' ability to generalize to tasks they weren't explicitly trained on.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Evaluate models' zero-shot transfer capabilities by assessing their performance on this dataset.

#### 8. **Domain Shift**

* **Existing Dataset**: **TUNIZI**

  * **Description**: Its diverse sources provide a foundation for testing domain adaptation capabilities.
  * **Source**: [K4All Foundation](https://k4all.org/project/database-tunisian-arabizi/)

* **Usage**: Assess models' ability to adapt to different domains by evaluating their performance on this dataset.

---

### πŸ§ͺ Phase 2: Metric Development & Evaluation Tasks

For each task, define the evaluation metric and the corresponding dataset:

| Task                     | Metric                  | Dataset                                                                                                                               |
| ------------------------ | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| Sentiment Analysis       | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Named Entity Recognition | F1 Score                | [ArabNER](https://www.researchgate.net/publication/374279027_Named_Entity_Recognition_of_Tunisian_Arabic_Using_the_Bi-LSTM-CRF_Model) |
| Corpus Coverage          | Vocabulary Coverage (%) | [Tunisian Dialect Corpus](https://huggingface.co/collections/tunis-ai/arabic-datasets-66344cf0df31dc81eb1dcf55)                       |
| Arabizi Robustness       | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Code-Switching           | Accuracy / F1 Score     | [TunSwitch](https://zenodo.org/records/8342762)                                                                                       |
| Typo Robustness          | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Zero-Shot Transfer       | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |
| Domain Shift             | Accuracy / F1 Score     | [TUNIZI](https://k4all.org/project/database-tunisian-arabizi/)                                                                        |

---

### πŸ—‚οΈ Suggested Folder Structure

To maintain organization and clarity, consider the following structure:

```
TunisianEncoderModelsLeaderboard/
β”œβ”€β”€ datasets/
β”‚   β”œβ”€β”€ sentiment/
β”‚   β”‚   └── tunizi.json
β”‚   β”œβ”€β”€ ner/
β”‚   β”‚   └── arabner.json
β”‚   β”œβ”€β”€ coverage/
β”‚   β”‚   └── tunisian_dialect_corpus.json
β”‚   β”œβ”€β”€ arabizi_robustness/
β”‚   β”‚   └── tunizi.json
β”‚   β”œβ”€β”€ code_switching/
β”‚   β”‚   └── tunswitch.json
β”‚   β”œβ”€β”€ typo_robustness/
β”‚   β”‚   └── tunizi_with_typos.json
β”‚   β”œβ”€β”€ zero_shot/
β”‚   β”‚   └── tunizi.json
β”‚   └── domain_shift/
β”‚       └── tunisian_domain_shift.json
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ preprocess.py
β”‚   β”œβ”€β”€ evaluate.py
β”‚   └── visualize.py
└── README.md
```

---

### βœ… Next Steps

1. **Integrate Existing Datasets**: Incorporate the datasets mentioned above into your repository, ensuring they are properly formatted and documented.

2. **Develop Evaluation Scripts**: Write scripts to evaluate models on each task, ensuring they are compatible with the leaderboard format.

3. **Populate the Leaderboard**: As models are evaluated, update the leaderboard to reflect their performance across tasks.

4. **Documentation**: Update the README.md file to provide clear instructions on how to use the leaderboard, contribute models, and interpret results.

---

If you need assistance with data collection, annotation guidelines, or script development, feel free to ask!