File size: 16,284 Bytes
a04b287
 
 
 
 
 
 
 
 
 
 
 
28e88f2
 
 
 
 
 
a04b287
 
 
 
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
 
 
 
 
 
 
 
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
742dfc3
 
a04b287
742dfc3
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
a04b287
742dfc3
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
a04b287
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e88f2
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e88f2
 
 
 
742dfc3
28e88f2
742dfc3
 
 
 
 
 
 
 
 
28e88f2
 
742dfc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e88f2
742dfc3
28e88f2
742dfc3
 
 
 
28e88f2
 
742dfc3
28e88f2
 
742dfc3
28e88f2
 
 
 
 
 
 
742dfc3
28e88f2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)
from src.evaluator.evaluate import evaluate_model, EvaluationStatus, EvaluationResult
from src.display.utils import Tasks
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
import time

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def create_eval_request(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    """Create and upload an evaluation request"""
    try:
        # Create evaluation request file
        request_data = {
            'model': model,
            'base_model': base_model,
            'revision': revision,
            'precision': precision,
            'weight_type': weight_type,
            'model_type': model_type,
            'status': EvaluationStatus.PENDING.value,
            'submitted_time': datetime.now(timezone.utc).isoformat()
        }
        
        # Create filename
        username = model.split('/')[0] if '/' in model else None
        request_filename = f"{username or 'unknown'}_{model.replace('/', '_')}_eval_request_{revision}_{precision}_{weight_type}.json"
        request_path = os.path.join(EVAL_REQUESTS_PATH, request_filename)
        
        # Write request file
        with open(request_path, 'w') as f:
            json.dump(request_data, f, indent=2)
        
        print(f"Created evaluation request: {request_filename}")
        
        # Upload to Hugging Face
        API.upload_file(
            path_or_fileobj=request_path,
            path_in_repo=request_filename if not username else os.path.join(username, request_filename),
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add evaluation request for {model}",
            token=TOKEN
        )
        
        print(f"Uploaded evaluation request to {QUEUE_REPO}")
        
        return styled_message(
            "Evaluation request created! Please wait for the evaluation to complete."
        )
    except Exception as e:
        print(f"Error creating evaluation request: {str(e)}")
        return styled_error(f"Failed to create evaluation request: {str(e)}")

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    """Validate model and create evaluation request"""
    try:
        print("\n=== Starting evaluation submission ===")
        print(f"Submission time: {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC")
        print(f"Model: {model}")
        print(f"Base model: {base_model}")
        print(f"Revision: {revision}")
        print(f"Precision: {precision}")
        print(f"Weight type: {weight_type}")
        print(f"Model type: {model_type}")
        print(f"Evaluation requests path: {EVAL_REQUESTS_PATH}")
        print(f"Queue repo: {QUEUE_REPO}")

        # Always refresh the cache before checking for duplicates
        print("\n=== Checking for duplicate submissions ===")
        global REQUESTED_MODELS
        global USERS_TO_SUBMISSION_DATES
        start_time = time.time()
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
        print(f"Cache refresh completed in {time.time() - start_time:.2f} seconds")
        print(f"Found {len(REQUESTED_MODELS)} existing submissions")

        user_name = ""
        model_path = model
        if "/" in model:
            user_name = model.split("/")[0]
            model_path = model.split("/")[1]
        print(f"\nUser name: {user_name}")
        print(f"Model path: {model_path}")

        precision = precision.split(" ")[0]
        if revision == "":
            revision = "main"
            print("Using default revision: main")
        
        current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
        
        # Check if model is already submitted
        print("\n=== Checking for existing submission ===")
        model_key = f"{model}_{revision}_{precision}"
        if model_key in REQUESTED_MODELS:
            print(f"Found existing submission with key: {model_key}")
            # Get the status from the queue file
            queue_file = REQUESTED_MODELS[model_key]
            try:
                with open(queue_file, 'r') as f:
                    queue_entry = json.load(f)
                status = queue_entry.get('status')
                print(f"Found existing submission with status: {status}")
                if status is None:
                    print(f"Warning: No status found in queue file {queue_file}")
                    return styled_warning("Error checking model status. Please try again later.")
                
                if status != EvaluationStatus.FAILED.value:
                    print(f"Model already submitted and in {status} status")
                    return styled_warning(f"This model has been already submitted and is in {status} status.")
            except Exception as e:
                print(f"Error reading queue file: {e}")
                print(f"Full traceback: {traceback.format_exc()}")
                return styled_warning("Error checking model status. Please try again later.")
    except Exception as e:
        print(f"Error during evaluation: {str(e)}")
        raise

        print("\n=== Validating model type ===")
        if model_type is None or model_type == "":
            print("Error: Model type is missing")
            return styled_error("Please select a model type.")

        print("\n=== Validating model existence ===")
        if revision == "":
            revision = "main"
            print("Using default revision: main")

        print("\n=== Validating model on Hugging Face ===")
        try:
            if weight_type in ["Delta", "Adapter"]:
                print(f"Checking base model {base_model} on Hugging Face...")
                base_model_on_hub, error, _ = is_model_on_hub(
                    model_name=base_model, 
                    revision=revision, 
                    token=TOKEN, 
                    test_tokenizer=True
                )
                print(f"Base model check result: {base_model_on_hub}")
                if not base_model_on_hub:
                    print(f"Error: Base model not found: {error}")
                    return styled_error(f'Base model "{base_model}" {error}')

            if not weight_type == "Adapter":
                print(f"Checking model {model} on Hugging Face...")
                model_on_hub, error, _ = is_model_on_hub(
                    model_name=model, 
                    revision=revision, 
                    token=TOKEN, 
                    test_tokenizer=True
                )
                print(f"Model check result: {model_on_hub}")
                if not model_on_hub:
                    print(f"Error: Model not found: {error}")
                    return styled_error(f'Model "{model}" {error}')
        except Exception as e:
            print(f"Error checking model on Hugging Face: {e}")
            print(f"Full traceback: {traceback.format_exc()}")
            return styled_error(f"Failed to validate model on Hugging Face: {str(e)}")

        print("\n=== Getting model info ===")
        try:
            model_info = API.model_info(repo_id=model, revision=revision)
            print(f"Successfully retrieved model info for {model}")
        except Exception as e:
            print(f"Error getting model info: {e}")
            print(f"Full traceback: {traceback.format_exc()}")
            return styled_error("Could not get your model information. Please fill it up properly.")

        print("\n=== Getting model size ===")
        try:
            model_size = get_model_size(model_info=model_info, precision=precision)
            print(f"Model size: {model_size}")
        except Exception as e:
            print(f"Error getting model size: {e}")
            print(f"Full traceback: {traceback.format_exc()}")
            model_size = "?"

        print("\n=== Validating model card and license ===")
        try:
            license = model_info.cardData["license"]
            print(f"Model license: {license}")
        except Exception as e:
            print(f"Error getting model license: {e}")
            print(f"Full traceback: {traceback.format_exc()}")
            return styled_error("Please select a license for your model")

        print("\n=== Checking model card ===")
        try:
            modelcard_OK, error_msg = check_model_card(model)
            print(f"Model card check result: {modelcard_OK}")
            if not modelcard_OK:
                print(f"Model card error: {error_msg}")
                return styled_error(error_msg)
        except Exception as e:
            print(f"Error checking model card: {e}")
            print(f"Full traceback: {traceback.format_exc()}")
            return styled_error("Failed to validate model card")

        print("\n=== Creating evaluation entry ===")
        eval_entry = {
            "model": model,
            "base_model": base_model,
            "revision": revision,
            "precision": precision,
            "weight_type": weight_type,
            "status": "PENDING",
            "submitted_time": current_time,
            "model_type": model_type,
            "likes": model_info.likes,
            "params": model_size,
            "license": license,
            "private": False,
        }
        print(f"\nEvaluation entry created: {json.dumps(eval_entry, indent=2)}")

        print("\n=== Checking for duplicate submission ===")
        model_key = f"{model}_{revision}_{precision}"
        if model_key in REQUESTED_MODELS:
            print(f"Found existing submission with key: {model_key}")
            # Get the status from the queue file
            queue_file = REQUESTED_MODELS[model_key]
            try:
                with open(queue_file, 'r') as f:
                    queue_entry = json.load(f)
                status = queue_entry.get('status')
                print(f"Found existing submission with status: {status}")
                if status is None:
                    print(f"Warning: No status found in queue file {queue_file}")
                    return styled_warning("Error checking model status. Please try again later.")
                
                if status != EvaluationStatus.FAILED.value:
                    print(f"Model already submitted and in {status} status")
                    return styled_warning(f"This model has been already submitted and is in {status} status.")
            except Exception as e:
                print(f"Error reading queue file: {e}")
                print(f"Full traceback: {traceback.format_exc()}")
                return styled_warning("Error checking model status. Please try again later.")

        print("\n=== Creating evaluation file ===")
        OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
        print(f"Creating output directory: {OUT_DIR}")
        os.makedirs(OUT_DIR, exist_ok=True)
        
        out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
        print(f"Output file path: {out_path}")

        # Write evaluation entry to file
        try:
            with open(out_path, "w") as f:
                f.write(json.dumps(eval_entry))
            print("\nEvaluation file created successfully")

            # Upload to Hugging Face
            print("\n=== Uploading evaluation file ===")
            API.upload_file(
                path_or_fileobj=out_path,
                path_in_repo=out_path.split("eval-queue/")[1],
                repo_id=QUEUE_REPO,
                repo_type="dataset",
                commit_message=f"Add evaluation request for {model}",
                token=TOKEN
            )
            print(f"\nEvaluation request uploaded successfully to {QUEUE_REPO}")
            
            # Clean up local file
            os.remove(out_path)
            print("\nLocal evaluation file removed")
            
            return styled_message(
                "Evaluation request created successfully! Please wait for the evaluation to complete."
            )
        except Exception as e:
            print(f"Error during file operations: {str(e)}")
            print(f"Full traceback: {traceback.format_exc()}")
            return styled_error(f"Failed to create evaluation request: {str(e)}")



        dataloader = DataLoader(tsac_dataset, batch_size=32, shuffle=False)
        
        model_obj.eval()
        with torch.no_grad():
            predictions = []
            targets = []
            
            for batch in dataloader:
                inputs = {k: v.to(device) for k, v in batch.items() if k != 'target'}
                target = batch['target'].to(device)
                
                # Log the first batch details
                if len(predictions) == 0:  # Only log for the first batch
                    print(f"\nFirst batch example:")
                    print(f"Input keys: {list(inputs.keys())}")
                    print(f"Target shape: {target.shape}")
                
                outputs = model_obj(**inputs)
                print(f"\nModel output type: {type(outputs)}")
                
                # Try to get logits from different possible formats
                if isinstance(outputs, dict):
                    print(f"Output keys: {list(outputs.keys())}")
                    # Try different common keys
                    if 'logits' in outputs:
                        logits = outputs['logits']
                    elif 'prediction_logits' in outputs:
                        logits = outputs['prediction_logits']
                    else:
                        raise ValueError(f"Unknown output format. Available keys: {list(outputs.keys())}")
                elif isinstance(outputs, tuple):
                    print(f"Output tuple length: {len(outputs)}")
                    # Try different positions in the tuple
                    if len(outputs) > 0:
                        logits = outputs[0]
                    else:
                        raise ValueError("Empty output tuple")
                else:
                    # If it's a single tensor, assume it's the logits
                    logits = outputs
                
                print(f"Logits shape: {logits.shape}")
                # For sequence classification, we typically use the [CLS] token's prediction
                # Get the first token's prediction (CLS token)
                cls_logits = logits[:, 0, :]  # Shape: [batch_size, num_classes]
                predictions.extend(cls_logits.argmax(dim=-1).cpu().tolist())
                targets.extend(target.cpu().tolist())
        
        accuracy = sum(p == t for p, t in zip(predictions, targets)) / len(predictions)
        
        eval_entry['results'] = {'accuracy': accuracy}
        
        # Update the queue file with results
        with open(out_path, "w") as f:
            f.write(json.dumps(eval_entry))

        # Evaluate on ArabML
        print("Evaluating on ArabML Tunisian Corpus...")
        arabml_dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="train", trust_remote_code=True)
        
        def preprocess_arabml(examples):
            return tokenizer(examples['Tweet'], padding=True, truncation=True, max_length=512)
        
        arabml_dataset = arabml_dataset.map(preprocess_arabml, batched=True)
        
        total_tokens = 0
        covered_tokens = 0
        
        for example in arabml_dataset:
            tokens = tokenizer.tokenize(example['Tweet'])
            total_tokens += len(tokens)
            covered_tokens += len([t for t in tokens if t != tokenizer.unk_token])
        
        arabml_coverage = covered_tokens / total_tokens if total_tokens > 0 else 0
        
        # Store results