Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	Commit 
							
							·
						
						4a09d4f
	
1
								Parent(s):
							
							6db905d
								
Create cog_sdxl_dataset_and_utils.py
Browse files- cog_sdxl_dataset_and_utils.py +422 -0
    	
        cog_sdxl_dataset_and_utils.py
    ADDED
    
    | @@ -0,0 +1,422 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            from typing import Dict, List, Optional, Tuple
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            import pandas as pd
         | 
| 7 | 
            +
            import PIL
         | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import torch.utils.checkpoint
         | 
| 10 | 
            +
            from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
         | 
| 11 | 
            +
            from PIL import Image
         | 
| 12 | 
            +
            from safetensors import safe_open
         | 
| 13 | 
            +
            from safetensors.torch import save_file
         | 
| 14 | 
            +
            from torch.utils.data import Dataset
         | 
| 15 | 
            +
            from transformers import AutoTokenizer, PretrainedConfig
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            def prepare_image(
         | 
| 19 | 
            +
                pil_image: PIL.Image.Image, w: int = 512, h: int = 512
         | 
| 20 | 
            +
            ) -> torch.Tensor:
         | 
| 21 | 
            +
                pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
         | 
| 22 | 
            +
                arr = np.array(pil_image.convert("RGB"))
         | 
| 23 | 
            +
                arr = arr.astype(np.float32) / 127.5 - 1
         | 
| 24 | 
            +
                arr = np.transpose(arr, [2, 0, 1])
         | 
| 25 | 
            +
                image = torch.from_numpy(arr).unsqueeze(0)
         | 
| 26 | 
            +
                return image
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def prepare_mask(
         | 
| 30 | 
            +
                pil_image: PIL.Image.Image, w: int = 512, h: int = 512
         | 
| 31 | 
            +
            ) -> torch.Tensor:
         | 
| 32 | 
            +
                pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
         | 
| 33 | 
            +
                arr = np.array(pil_image.convert("L"))
         | 
| 34 | 
            +
                arr = arr.astype(np.float32) / 255.0
         | 
| 35 | 
            +
                arr = np.expand_dims(arr, 0)
         | 
| 36 | 
            +
                image = torch.from_numpy(arr).unsqueeze(0)
         | 
| 37 | 
            +
                return image
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            class PreprocessedDataset(Dataset):
         | 
| 41 | 
            +
                def __init__(
         | 
| 42 | 
            +
                    self,
         | 
| 43 | 
            +
                    csv_path: str,
         | 
| 44 | 
            +
                    tokenizer_1,
         | 
| 45 | 
            +
                    tokenizer_2,
         | 
| 46 | 
            +
                    vae_encoder,
         | 
| 47 | 
            +
                    text_encoder_1=None,
         | 
| 48 | 
            +
                    text_encoder_2=None,
         | 
| 49 | 
            +
                    do_cache: bool = False,
         | 
| 50 | 
            +
                    size: int = 512,
         | 
| 51 | 
            +
                    text_dropout: float = 0.0,
         | 
| 52 | 
            +
                    scale_vae_latents: bool = True,
         | 
| 53 | 
            +
                    substitute_caption_map: Dict[str, str] = {},
         | 
| 54 | 
            +
                ):
         | 
| 55 | 
            +
                    super().__init__()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    self.data = pd.read_csv(csv_path)
         | 
| 58 | 
            +
                    self.csv_path = csv_path
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    self.caption = self.data["caption"]
         | 
| 61 | 
            +
                    # make it lowercase
         | 
| 62 | 
            +
                    self.caption = self.caption.str.lower()
         | 
| 63 | 
            +
                    for key, value in substitute_caption_map.items():
         | 
| 64 | 
            +
                        self.caption = self.caption.str.replace(key.lower(), value)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    self.image_path = self.data["image_path"]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    if "mask_path" not in self.data.columns:
         | 
| 69 | 
            +
                        self.mask_path = None
         | 
| 70 | 
            +
                    else:
         | 
| 71 | 
            +
                        self.mask_path = self.data["mask_path"]
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    if text_encoder_1 is None:
         | 
| 74 | 
            +
                        self.return_text_embeddings = False
         | 
| 75 | 
            +
                    else:
         | 
| 76 | 
            +
                        self.text_encoder_1 = text_encoder_1
         | 
| 77 | 
            +
                        self.text_encoder_2 = text_encoder_2
         | 
| 78 | 
            +
                        self.return_text_embeddings = True
         | 
| 79 | 
            +
                        assert (
         | 
| 80 | 
            +
                            NotImplementedError
         | 
| 81 | 
            +
                        ), "Preprocessing Text Encoder is not implemented yet"
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    self.tokenizer_1 = tokenizer_1
         | 
| 84 | 
            +
                    self.tokenizer_2 = tokenizer_2
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    self.vae_encoder = vae_encoder
         | 
| 87 | 
            +
                    self.scale_vae_latents = scale_vae_latents
         | 
| 88 | 
            +
                    self.text_dropout = text_dropout
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    self.size = size
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    if do_cache:
         | 
| 93 | 
            +
                        self.vae_latents = []
         | 
| 94 | 
            +
                        self.tokens_tuple = []
         | 
| 95 | 
            +
                        self.masks = []
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                        self.do_cache = True
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                        print("Captions to train on: ")
         | 
| 100 | 
            +
                        for idx in range(len(self.data)):
         | 
| 101 | 
            +
                            token, vae_latent, mask = self._process(idx)
         | 
| 102 | 
            +
                            self.vae_latents.append(vae_latent)
         | 
| 103 | 
            +
                            self.tokens_tuple.append(token)
         | 
| 104 | 
            +
                            self.masks.append(mask)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                        del self.vae_encoder
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    else:
         | 
| 109 | 
            +
                        self.do_cache = False
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                @torch.no_grad()
         | 
| 112 | 
            +
                def _process(
         | 
| 113 | 
            +
                    self, idx: int
         | 
| 114 | 
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
         | 
| 115 | 
            +
                    image_path = self.image_path[idx]
         | 
| 116 | 
            +
                    image_path = os.path.join(os.path.dirname(self.csv_path), image_path)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    image = PIL.Image.open(image_path).convert("RGB")
         | 
| 119 | 
            +
                    image = prepare_image(image, self.size, self.size).to(
         | 
| 120 | 
            +
                        dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    caption = self.caption[idx]
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    print(caption)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    # tokenizer_1
         | 
| 128 | 
            +
                    ti1 = self.tokenizer_1(
         | 
| 129 | 
            +
                        caption,
         | 
| 130 | 
            +
                        padding="max_length",
         | 
| 131 | 
            +
                        max_length=77,
         | 
| 132 | 
            +
                        truncation=True,
         | 
| 133 | 
            +
                        add_special_tokens=True,
         | 
| 134 | 
            +
                        return_tensors="pt",
         | 
| 135 | 
            +
                    ).input_ids
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    ti2 = self.tokenizer_2(
         | 
| 138 | 
            +
                        caption,
         | 
| 139 | 
            +
                        padding="max_length",
         | 
| 140 | 
            +
                        max_length=77,
         | 
| 141 | 
            +
                        truncation=True,
         | 
| 142 | 
            +
                        add_special_tokens=True,
         | 
| 143 | 
            +
                        return_tensors="pt",
         | 
| 144 | 
            +
                    ).input_ids
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    if self.scale_vae_latents:
         | 
| 149 | 
            +
                        vae_latent = vae_latent * self.vae_encoder.config.scaling_factor
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    if self.mask_path is None:
         | 
| 152 | 
            +
                        mask = torch.ones_like(
         | 
| 153 | 
            +
                            vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
         | 
| 154 | 
            +
                        )
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    else:
         | 
| 157 | 
            +
                        mask_path = self.mask_path[idx]
         | 
| 158 | 
            +
                        mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                        mask = PIL.Image.open(mask_path)
         | 
| 161 | 
            +
                        mask = prepare_mask(mask, self.size, self.size).to(
         | 
| 162 | 
            +
                            dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
         | 
| 163 | 
            +
                        )
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                        mask = torch.nn.functional.interpolate(
         | 
| 166 | 
            +
                            mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest"
         | 
| 167 | 
            +
                        )
         | 
| 168 | 
            +
                        mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    assert len(mask.shape) == 4 and len(vae_latent.shape) == 4
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def __len__(self) -> int:
         | 
| 175 | 
            +
                    return len(self.data)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def atidx(
         | 
| 178 | 
            +
                    self, idx: int
         | 
| 179 | 
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
         | 
| 180 | 
            +
                    if self.do_cache:
         | 
| 181 | 
            +
                        return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]
         | 
| 182 | 
            +
                    else:
         | 
| 183 | 
            +
                        return self._process(idx)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def __getitem__(
         | 
| 186 | 
            +
                    self, idx: int
         | 
| 187 | 
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
         | 
| 188 | 
            +
                    token, vae_latent, mask = self.atidx(idx)
         | 
| 189 | 
            +
                    return token, vae_latent, mask
         | 
| 190 | 
            +
             | 
| 191 | 
            +
             | 
| 192 | 
            +
            def import_model_class_from_model_name_or_path(
         | 
| 193 | 
            +
                pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
         | 
| 194 | 
            +
            ):
         | 
| 195 | 
            +
                text_encoder_config = PretrainedConfig.from_pretrained(
         | 
| 196 | 
            +
                    pretrained_model_name_or_path, subfolder=subfolder, revision=revision
         | 
| 197 | 
            +
                )
         | 
| 198 | 
            +
                model_class = text_encoder_config.architectures[0]
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                if model_class == "CLIPTextModel":
         | 
| 201 | 
            +
                    from transformers import CLIPTextModel
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    return CLIPTextModel
         | 
| 204 | 
            +
                elif model_class == "CLIPTextModelWithProjection":
         | 
| 205 | 
            +
                    from transformers import CLIPTextModelWithProjection
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return CLIPTextModelWithProjection
         | 
| 208 | 
            +
                else:
         | 
| 209 | 
            +
                    raise ValueError(f"{model_class} is not supported.")
         | 
| 210 | 
            +
             | 
| 211 | 
            +
             | 
| 212 | 
            +
            def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
         | 
| 213 | 
            +
                tokenizer_one = AutoTokenizer.from_pretrained(
         | 
| 214 | 
            +
                    pretrained_model_name_or_path,
         | 
| 215 | 
            +
                    subfolder="tokenizer",
         | 
| 216 | 
            +
                    revision=revision,
         | 
| 217 | 
            +
                    use_fast=False,
         | 
| 218 | 
            +
                )
         | 
| 219 | 
            +
                tokenizer_two = AutoTokenizer.from_pretrained(
         | 
| 220 | 
            +
                    pretrained_model_name_or_path,
         | 
| 221 | 
            +
                    subfolder="tokenizer_2",
         | 
| 222 | 
            +
                    revision=revision,
         | 
| 223 | 
            +
                    use_fast=False,
         | 
| 224 | 
            +
                )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                # Load scheduler and models
         | 
| 227 | 
            +
                noise_scheduler = DDPMScheduler.from_pretrained(
         | 
| 228 | 
            +
                    pretrained_model_name_or_path, subfolder="scheduler"
         | 
| 229 | 
            +
                )
         | 
| 230 | 
            +
                # import correct text encoder classes
         | 
| 231 | 
            +
                text_encoder_cls_one = import_model_class_from_model_name_or_path(
         | 
| 232 | 
            +
                    pretrained_model_name_or_path, revision
         | 
| 233 | 
            +
                )
         | 
| 234 | 
            +
                text_encoder_cls_two = import_model_class_from_model_name_or_path(
         | 
| 235 | 
            +
                    pretrained_model_name_or_path, revision, subfolder="text_encoder_2"
         | 
| 236 | 
            +
                )
         | 
| 237 | 
            +
                text_encoder_one = text_encoder_cls_one.from_pretrained(
         | 
| 238 | 
            +
                    pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
         | 
| 239 | 
            +
                )
         | 
| 240 | 
            +
                text_encoder_two = text_encoder_cls_two.from_pretrained(
         | 
| 241 | 
            +
                    pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision
         | 
| 242 | 
            +
                )
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                vae = AutoencoderKL.from_pretrained(
         | 
| 245 | 
            +
                    pretrained_model_name_or_path, subfolder="vae", revision=revision
         | 
| 246 | 
            +
                )
         | 
| 247 | 
            +
                unet = UNet2DConditionModel.from_pretrained(
         | 
| 248 | 
            +
                    pretrained_model_name_or_path, subfolder="unet", revision=revision
         | 
| 249 | 
            +
                )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                vae.requires_grad_(False)
         | 
| 252 | 
            +
                text_encoder_one.requires_grad_(False)
         | 
| 253 | 
            +
                text_encoder_two.requires_grad_(False)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                unet.to(device, dtype=weight_dtype)
         | 
| 256 | 
            +
                vae.to(device, dtype=torch.float32)
         | 
| 257 | 
            +
                text_encoder_one.to(device, dtype=weight_dtype)
         | 
| 258 | 
            +
                text_encoder_two.to(device, dtype=weight_dtype)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                return (
         | 
| 261 | 
            +
                    tokenizer_one,
         | 
| 262 | 
            +
                    tokenizer_two,
         | 
| 263 | 
            +
                    noise_scheduler,
         | 
| 264 | 
            +
                    text_encoder_one,
         | 
| 265 | 
            +
                    text_encoder_two,
         | 
| 266 | 
            +
                    vae,
         | 
| 267 | 
            +
                    unet,
         | 
| 268 | 
            +
                )
         | 
| 269 | 
            +
             | 
| 270 | 
            +
             | 
| 271 | 
            +
            def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
         | 
| 272 | 
            +
                """
         | 
| 273 | 
            +
                Returns:
         | 
| 274 | 
            +
                    a state dict containing just the attention processor parameters.
         | 
| 275 | 
            +
                """
         | 
| 276 | 
            +
                attn_processors = unet.attn_processors
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                attn_processors_state_dict = {}
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                for attn_processor_key, attn_processor in attn_processors.items():
         | 
| 281 | 
            +
                    for parameter_key, parameter in attn_processor.state_dict().items():
         | 
| 282 | 
            +
                        attn_processors_state_dict[
         | 
| 283 | 
            +
                            f"{attn_processor_key}.{parameter_key}"
         | 
| 284 | 
            +
                        ] = parameter
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                return attn_processors_state_dict
         | 
| 287 | 
            +
             | 
| 288 | 
            +
             | 
| 289 | 
            +
            class TokenEmbeddingsHandler:
         | 
| 290 | 
            +
                def __init__(self, text_encoders, tokenizers):
         | 
| 291 | 
            +
                    self.text_encoders = text_encoders
         | 
| 292 | 
            +
                    self.tokenizers = tokenizers
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    self.train_ids: Optional[torch.Tensor] = None
         | 
| 295 | 
            +
                    self.inserting_toks: Optional[List[str]] = None
         | 
| 296 | 
            +
                    self.embeddings_settings = {}
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                def initialize_new_tokens(self, inserting_toks: List[str]):
         | 
| 299 | 
            +
                    idx = 0
         | 
| 300 | 
            +
                    for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
         | 
| 301 | 
            +
                        assert isinstance(
         | 
| 302 | 
            +
                            inserting_toks, list
         | 
| 303 | 
            +
                        ), "inserting_toks should be a list of strings."
         | 
| 304 | 
            +
                        assert all(
         | 
| 305 | 
            +
                            isinstance(tok, str) for tok in inserting_toks
         | 
| 306 | 
            +
                        ), "All elements in inserting_toks should be strings."
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                        self.inserting_toks = inserting_toks
         | 
| 309 | 
            +
                        special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
         | 
| 310 | 
            +
                        tokenizer.add_special_tokens(special_tokens_dict)
         | 
| 311 | 
            +
                        text_encoder.resize_token_embeddings(len(tokenizer))
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                        self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                        # random initialization of new tokens
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                        std_token_embedding = (
         | 
| 318 | 
            +
                            text_encoder.text_model.embeddings.token_embedding.weight.data.std()
         | 
| 319 | 
            +
                        )
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                        print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                        text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 324 | 
            +
                            self.train_ids
         | 
| 325 | 
            +
                        ] = (
         | 
| 326 | 
            +
                            torch.randn(
         | 
| 327 | 
            +
                                len(self.train_ids), text_encoder.text_model.config.hidden_size
         | 
| 328 | 
            +
                            )
         | 
| 329 | 
            +
                            .to(device=self.device)
         | 
| 330 | 
            +
                            .to(dtype=self.dtype)
         | 
| 331 | 
            +
                            * std_token_embedding
         | 
| 332 | 
            +
                        )
         | 
| 333 | 
            +
                        self.embeddings_settings[
         | 
| 334 | 
            +
                            f"original_embeddings_{idx}"
         | 
| 335 | 
            +
                        ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
         | 
| 336 | 
            +
                        self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                        inu = torch.ones((len(tokenizer),), dtype=torch.bool)
         | 
| 339 | 
            +
                        inu[self.train_ids] = False
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                        self.embeddings_settings[f"index_no_updates_{idx}"] = inu
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                        print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                        idx += 1
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def save_embeddings(self, file_path: str):
         | 
| 348 | 
            +
                    assert (
         | 
| 349 | 
            +
                        self.train_ids is not None
         | 
| 350 | 
            +
                    ), "Initialize new tokens before saving embeddings."
         | 
| 351 | 
            +
                    tensors = {}
         | 
| 352 | 
            +
                    for idx, text_encoder in enumerate(self.text_encoders):
         | 
| 353 | 
            +
                        assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[
         | 
| 354 | 
            +
                            0
         | 
| 355 | 
            +
                        ] == len(self.tokenizers[0]), "Tokenizers should be the same."
         | 
| 356 | 
            +
                        new_token_embeddings = (
         | 
| 357 | 
            +
                            text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 358 | 
            +
                                self.train_ids
         | 
| 359 | 
            +
                            ]
         | 
| 360 | 
            +
                        )
         | 
| 361 | 
            +
                        tensors[f"text_encoders_{idx}"] = new_token_embeddings
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    save_file(tensors, file_path)
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                @property
         | 
| 366 | 
            +
                def dtype(self):
         | 
| 367 | 
            +
                    return self.text_encoders[0].dtype
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                @property
         | 
| 370 | 
            +
                def device(self):
         | 
| 371 | 
            +
                    return self.text_encoders[0].device
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder):
         | 
| 374 | 
            +
                    # Assuming new tokens are of the format <s_i>
         | 
| 375 | 
            +
                    self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])]
         | 
| 376 | 
            +
                    special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
         | 
| 377 | 
            +
                    tokenizer.add_special_tokens(special_tokens_dict)
         | 
| 378 | 
            +
                    text_encoder.resize_token_embeddings(len(tokenizer))
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
         | 
| 381 | 
            +
                    assert self.train_ids is not None, "New tokens could not be converted to IDs."
         | 
| 382 | 
            +
                    text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 383 | 
            +
                        self.train_ids
         | 
| 384 | 
            +
                    ] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                @torch.no_grad()
         | 
| 387 | 
            +
                def retract_embeddings(self):
         | 
| 388 | 
            +
                    for idx, text_encoder in enumerate(self.text_encoders):
         | 
| 389 | 
            +
                        index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
         | 
| 390 | 
            +
                        text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 391 | 
            +
                            index_no_updates
         | 
| 392 | 
            +
                        ] = (
         | 
| 393 | 
            +
                            self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
         | 
| 394 | 
            +
                            .to(device=text_encoder.device)
         | 
| 395 | 
            +
                            .to(dtype=text_encoder.dtype)
         | 
| 396 | 
            +
                        )
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                        # for the parts that were updated, we need to normalize them
         | 
| 399 | 
            +
                        # to have the same std as before
         | 
| 400 | 
            +
                        std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                        index_updates = ~index_no_updates
         | 
| 403 | 
            +
                        new_embeddings = (
         | 
| 404 | 
            +
                            text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 405 | 
            +
                                index_updates
         | 
| 406 | 
            +
                            ]
         | 
| 407 | 
            +
                        )
         | 
| 408 | 
            +
                        off_ratio = std_token_embedding / new_embeddings.std()
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                        new_embeddings = new_embeddings * (off_ratio**0.1)
         | 
| 411 | 
            +
                        text_encoder.text_model.embeddings.token_embedding.weight.data[
         | 
| 412 | 
            +
                            index_updates
         | 
| 413 | 
            +
                        ] = new_embeddings
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                def load_embeddings(self, file_path: str):
         | 
| 416 | 
            +
                    with safe_open(file_path, framework="pt", device=self.device.type) as f:
         | 
| 417 | 
            +
                        for idx in range(len(self.text_encoders)):
         | 
| 418 | 
            +
                            text_encoder = self.text_encoders[idx]
         | 
| 419 | 
            +
                            tokenizer = self.tokenizers[idx]
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                            loaded_embeddings = f.get_tensor(f"text_encoders_{idx}")
         | 
| 422 | 
            +
                            self._load_embeddings(loaded_embeddings, tokenizer, text_encoder)
         | 
 
			
