File size: 13,959 Bytes
085fdaa
c1857cb
085fdaa
 
 
1c76709
eadd412
 
085fdaa
eadd412
 
 
c1857cb
eadd412
1c76709
 
eadd412
 
1c76709
 
eadd412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1857cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eadd412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a5488
eadd412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a5488
eadd412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085fdaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97027a
 
 
085fdaa
 
 
1c76709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1857cb
1c76709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085fdaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import json
from io import BytesIO
from pathlib import Path
from typing import Any, Dict, List

import keras
import matplotlib.pyplot as plt
import numpy as np
import tyro
from keras import ops
from matplotlib.patches import PathPatch
from matplotlib.path import Path as pltPath
from PIL import Image
from skimage import measure
from zea import log
from zea.utils import save_to_gif
from zea.visualize import plot_image_grid

from utils import postprocess


def add_shape_from_mask(ax, mask, **kwargs):
    """add a shape to axis from mask array.

    Args:
        ax (plt.ax): matplotlib axis
        mask (ndarray): numpy array with non-zero
            shape defining the region of interest.
    Kwargs:
        edgecolor (str): color of the shape's edge
        facecolor (str): color of the shape's face
        linewidth (int): width of the shape's edge

    Returns:
        plt.ax: matplotlib axis with shape added
    """
    # Pad mask to ensure edge contours are found
    padded_mask = np.pad(mask, pad_width=1, mode="constant", constant_values=0)
    contours = measure.find_contours(padded_mask, 0.5)
    patches = []
    for contour in contours:
        # Remove padding offset
        contour -= 1
        path = pltPath(contour[:, ::-1])
        patch = PathPatch(path, **kwargs)
        patches.append(ax.add_patch(patch))
    return patches


def matplotlib_figure_to_numpy(fig):
    """Convert matplotlib figure to numpy array.

    Args:
        fig (matplotlib.figure.Figure): figure to convert.

    Returns:
        np.ndarray: numpy array of figure.

    """
    buf = BytesIO()
    fig.savefig(buf, format="png", bbox_inches="tight")
    buf.seek(0)
    image = Image.open(buf).convert("RGB")
    image = np.array(image)[..., :3]
    buf.close()
    return image


def plot_batch_with_named_masks(
    images, masks_dict, mask_colors=None, titles=None, **kwargs
):
    """
    Plot batch of images in rows, each column overlays a different mask from the dict.
    Mask labels are shown as column titles. If mask name is 'per_pixel_omega', show it
    directly with inferno colormap (no overlay).

    Args:
        images: np.ndarray, shape (batch, height, width, channels)
        masks_dict: dict of {name: mask}, each mask shape  (batch, height, width, channels)
        mask_colors: dict of {name: color} or None (default colors used)
    """
    mask_names = list(masks_dict.keys())
    batch_size = images.shape[0]
    default_colors = ["red", "green", "#33aaff", "yellow", "magenta", "cyan"]
    mask_colors = mask_colors or {
        name: default_colors[i % len(default_colors)]
        for i, name in enumerate(mask_names)
    }

    # Prepare images for each column
    columns = []
    cmaps = []
    for name in mask_names:
        if name == "per_pixel_omega":
            mask_np = np.array(masks_dict[name])
            columns.append(np.squeeze(mask_np))
            cmaps.append(["inferno"] * batch_size)
        else:
            columns.append(np.squeeze(images))
            cmaps.append(["gray"] * batch_size)

    # Stack columns: shape (num_columns, batch, ...)
    all_images = np.stack(columns, axis=0)  # (num_columns, batch, ...)
    # Rearrange to (batch, num_columns, ...)
    all_images = (
        np.transpose(all_images, (1, 0, 2, 3, 4))
        if all_images.ndim == 5
        else np.transpose(all_images, (1, 0, 2, 3))
    )
    # Flatten to (batch * num_columns, ...)
    all_images = all_images.reshape(batch_size * len(mask_names), *images.shape[1:])

    # Flatten cmaps for plot_image_grid in the same order as images
    flat_cmaps = []
    for row in range(batch_size):
        for col in range(len(mask_names)):
            flat_cmaps.append(cmaps[col][row])

    fig, _ = plot_image_grid(
        all_images,
        ncols=len(mask_names),
        remove_axis=False,
        cmap=flat_cmaps,
        figsize=(8, 3.3),
        **kwargs,
    )

    # Overlay masks for non-per_pixel_omega columns
    for col_idx, name in enumerate(mask_names):
        if name == "per_pixel_omega":
            continue
        mask_np = np.array(masks_dict[name])
        axes = fig.axes[col_idx : batch_size * len(mask_names) : len(mask_names)]
        for ax, mask_img in zip(axes, mask_np):
            add_shape_from_mask(
                ax, mask_img.squeeze(), color=mask_colors[name], alpha=0.3
            )

    # Add column titles
    row_idx = 0
    if titles is None:
        titles = mask_names
    for col_idx, name in enumerate(titles):
        ax_idx = row_idx * len(mask_names) + col_idx
        fig.axes[ax_idx].set_title(name, fontsize=9, color="white")
        fig.axes[ax_idx].set_facecolor("black")

    # Add colorbar for per_pixel_omega if present
    if "per_pixel_omega" in mask_names:
        col_idx = mask_names.index("per_pixel_omega")
        axes = fig.axes[col_idx : batch_size * len(mask_names) : len(mask_names)]

        # Get vertical bounds of the subplot column
        top_ax = axes[0]
        bottom_ax = axes[-1]
        top_pos = top_ax.get_position()
        bottom_pos = bottom_ax.get_position()

        full_y0 = bottom_pos.y0
        full_y1 = top_pos.y1
        full_height = full_y1 - full_y0

        # Manually shrink to 80% of full height and center vertically
        scale = 0.8
        height = full_height * scale
        y0 = full_y0 + (full_height - height) / 2

        x0 = top_pos.x1 + 0.015  # Horizontal position to the right
        width = 0.015  # Thin bar

        # Add colorbar axis
        cax = fig.add_axes([x0, y0, width, height])

        im = axes[0].get_images()[0] if axes[0].get_images() else None
        cbar = fig.colorbar(im, cax=cax)
        cbar.set_label(r"Guidance weighting $\mathbf{p}$")
        cbar.ax.yaxis.set_major_locator(plt.MaxNLocator(nbins=6))
        cbar.ax.yaxis.set_tick_params(labelsize=7)
        cbar.ax.yaxis.label.set_size(8)

    return fig


def plot_dehazed_results(
    hazy_images,
    pred_tissue_images,
    pred_haze_images,
    diffusion_model,
    titles=("Hazy", "Dehazed", "Haze"),
):
    """Create and save visualization with optional mask overlays."""

    # Create the processed image stack using the helper function
    input_shape = diffusion_model.input_shape
    stack_images = ops.stack(
        [
            hazy_images,
            pred_tissue_images,
            pred_haze_images,
        ]
    )
    stack_images = ops.reshape(stack_images, (-1, input_shape[0], input_shape[1]))

    # Define labels based on what we're showing
    fig, _ = plot_image_grid(
        stack_images,
        ncols=len(hazy_images),
        remove_axis=False,
        vmin=0,
        vmax=255,
    )
    # Set labels and styling
    for i, ax in enumerate(fig.axes):
        if i % len(hazy_images) == 0:
            label = titles[(i // len(hazy_images)) % len(titles)]
            ax.set_ylabel(label, fontsize=12)

    return fig


def plot_metrics(metrics, limits, out_path):
    plt.style.use("seaborn-v0_8-darkgrid")
    fig, axes = plt.subplots(1, len(metrics), figsize=(7.2, 2.7), dpi=200)
    colors = ["#0057b7", "#ffb300", "#008744", "#d62d20"]
    metric_labels = {
        "CNR": r"CNR $\uparrow$",
        "gCNR": r"gCNR $\uparrow$",
        "KS_A": r"KS$_{septum}$ $\downarrow$",
        "KS_B": r"KS$_{ventricle}$ $\uparrow$",
    }
    # For legend handles
    legend_handles = []
    import matplotlib.lines as mlines

    min_style = {
        "color": "crimson",
        "linestyle": "--",
        "lw": 1.2,
        "marker": "o",
        "markersize": 5,
    }
    max_style = {
        "color": "crimson",
        "linestyle": ":",
        "lw": 1.2,
        "marker": "s",
        "markersize": 5,
    }
    for idx, (ax, (name, values)) in enumerate(zip(axes, metrics.items())):
        ax.hist(
            values,
            bins=30,
            color=colors[idx % len(colors)],
            alpha=0.85,
            edgecolor="black",
            linewidth=0.7,
        )
        ax.set_xlabel(metric_labels.get(name, name), fontsize=11)
        if idx == 0:
            ax.set_ylabel("Count", fontsize=10)
        # Draw limits and collect legend handles only once
        if name in limits:
            lims = limits[name]
            if len(legend_handles) == 0:
                # Only add legend handles for the first metric
                min_handle = mlines.Line2D([], [], **min_style, label="min score")
                max_handle = mlines.Line2D([], [], **max_style, label="max score")
                legend_handles.extend([min_handle, max_handle])
            if len(lims) > 0:
                ax.axvline(lims[0], **min_style)
            if len(lims) > 1:
                ax.axvline(lims[1], **max_style)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        ax.tick_params(axis="both", which="major", labelsize=9)
    # Place legend above all subplots
    fig.legend(
        handles=legend_handles,
        loc="upper center",
        ncol=2,
        fontsize=10,
        frameon=False,
        bbox_to_anchor=(0.5, 1.02),
    )
    return fig


def plot_optimization_history_from_json(
    trials_data: List[Dict[str, Any]], output_path: Path, method: str
):
    """Plot optimization history directly from JSON data."""

    # Extract completed trials with values
    completed_trials = [
        t for t in trials_data if t["state"] == "COMPLETE" and t["value"] is not None
    ]

    if not completed_trials:
        print("No completed trials found!")
        return

    # Sort by trial number
    completed_trials.sort(key=lambda x: x["number"])

    trial_numbers = [t["number"] for t in completed_trials]
    values = [t["value"] for t in completed_trials]

    # Apply seaborn styling
    plt.style.use("seaborn-v0_8-darkgrid")

    # Create the plot
    fig, ax = plt.subplots(figsize=(5, 3), dpi=600)

    # Plot all trial values with styling similar to plots.py
    ax.scatter(
        trial_numbers,
        values,
        c="#0057b7",
        alpha=0.6,
        s=30,
        edgecolor="black",
        linewidth=0.5,
    )

    # Plot best value so far
    best_values = []
    current_best = values[0]
    for val in values:
        if val > current_best:  # Assuming maximization
            current_best = val
        best_values.append(current_best)

    ax.plot(
        trial_numbers,
        best_values,
        color="#d62d20",
        linewidth=2.5,
        label="Best Value",
        marker="o",
        markersize=4,
        markevery=max(1, len(trial_numbers) // 20),
    )

    ax.set_xlabel("Trial", fontsize=11)
    ax.set_ylabel("Objective Value", fontsize=11)
    # ax.set_title("Optimization History", fontsize=12)
    ax.legend(fontsize=10, frameon=False)

    # Remove top and right spines like in plots.py
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.tick_params(axis="both", which="major", labelsize=9)

    # Save plot
    fig.savefig(
        output_path / f"optimization_history_{method}.png", dpi=600, bbox_inches="tight"
    )
    fig.savefig(
        output_path / f"optimization_history_{method}.pdf", dpi=600, bbox_inches="tight"
    )
    plt.close(fig)


def create_animation_frame(hazy_images, tissue_frame, haze_frame):
    """Create a single animation frame from the tracked progress."""
    batch, height, width = ops.shape(hazy_images)
    frame_stack = ops.stack(
        [
            hazy_images,
            tissue_frame,
            haze_frame,
        ]
    )
    frame_stack = ops.reshape(frame_stack, (-1, height, width))
    fig_frame, _ = plot_image_grid(
        frame_stack,
        ncols=len(hazy_images),
        remove_axis=False,
        vmin=0,
        vmax=255,
    )
    labels = ["Hazy", "Haze", "Tissue"]
    for i, ax in enumerate(fig_frame.axes):
        label = labels[i % len(labels)]
        ax.set_ylabel(label, fontsize=12)
    frame_array = matplotlib_figure_to_numpy(fig_frame)
    plt.close(fig_frame)
    return frame_array


def create_animation(hazy_images, diffusion_model, output_path, fps):
    """Create animation from tracked progress frames."""
    if not (len(diffusion_model.track_progress) > 1):
        log.warning(
            "Animation requested but no intermediate frames were tracked. "
            "Try reducing diffusion_steps or ensure progress tracking is enabled."
        )
        return

    log.info(f"Creating animation with {len(diffusion_model.track_progress)} frames...")

    animation_frames = []
    progbar = keras.utils.Progbar(
        len(diffusion_model.track_progress), unit_name="frame"
    )
    for tissue_frame in diffusion_model.track_progress:
        haze_frame = hazy_images - tissue_frame - 1
        tissue_frame = postprocess(tissue_frame, diffusion_model.input_range)
        haze_frame = postprocess(haze_frame, diffusion_model.input_range)
        _hazy_images = postprocess(hazy_images, diffusion_model.input_range)
        frame_array = create_animation_frame(_hazy_images, tissue_frame, haze_frame)
        animation_frames.append(frame_array)
        progbar.add(1)

    Path(output_path).parent.mkdir(parents=True, exist_ok=True)
    animation_path = Path(output_path).with_suffix(".gif")
    save_to_gif(animation_frames, animation_path, fps=fps)


def main(json_file: str, output_dir: str = "plots", method: str = "semantic_dps"):
    json_path = Path(json_file)
    if not json_path.exists():
        raise FileNotFoundError(f"JSON file not found: {json_file}")

    # Load trial data
    with open(json_path, "r") as f:
        trials_data = json.load(f)

    print(f"Loaded {len(trials_data)} trials from {json_file}")

    # Create output directory
    output_path = Path(output_dir)
    output_path.mkdir(parents=True, exist_ok=True)

    print("Generating optimization history plot...")
    plot_optimization_history_from_json(trials_data, output_path, method)


if __name__ == "__main__":
    tyro.cli(main)