File size: 10,277 Bytes
3cbb31e 609acff 4e14677 3cbb31e 641a864 3cbb31e 969f59e 3cbb31e 641a864 3cbb31e 641a864 3cbb31e 641a864 3cbb31e 641a864 3646605 641a864 3646605 3cbb31e 641a864 3646605 641a864 3646605 641a864 3646605 641a864 3646605 3cbb31e 3646605 641a864 3cbb31e 3646605 641a864 3646605 3cbb31e 3646605 641a864 3646605 3cbb31e 3646605 641a864 3646605 3cbb31e 3646605 641a864 3646605 3cbb31e 969f59e 3cbb31e 641a864 3cbb31e 641a864 4658d29 641a864 3cbb31e 641a864 3cbb31e 3646605 3cbb31e 641a864 3cbb31e 3646605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
os.environ["KERAS_BACKEND"] = "jax"
import gradio as gr
import jax
import numpy as np
import spaces
from PIL import Image
from zea import init_device
from main import Config, init, run
from utils import load_image
CONFIG_PATH = "configs/semantic_dps.yaml"
SLIDER_CONFIG_PATH = "configs/slider_params.yaml"
ASSETS_DIR = "assets"
DEVICE = None
STATUS_STYLE_LOAD = "display:flex;align-items:center;justify-content:center;padding:40px 10px 18px 10px;border-radius:8px;font-weight:bold;font-size:1.15em;line-height:1.5;align-items:center;"
STATUS_STYLE = "display:flex;align-items:center;justify-content:center;padding:18px 18px 18px 10px;border-radius:8px;font-weight:bold;font-size:1.15em;line-height:1.1;align-items:center;"
description = """
# Cardiac Ultrasound Dehazing with Semantic Diffusion
Select an example image below to see the dehazing algorithm in action. The algorithm was tuned for the DehazingEcho2025 challenge dataset, so be wary of using it on other datasets.
Tip: Adjust "Omega (Ventricle)" and "Eta (haze prior)" to control the dehazing effect.
"""
# Model and config will be loaded after UI is rendered
config, diffusion_model = None, None
model_loaded = False
def initialize_model():
global config, diffusion_model, model_loaded
if config is None or diffusion_model is None:
config = Config.from_yaml(CONFIG_PATH)
diffusion_model = init(config)
# Warm-up: run a dummy inference to initialize weights, JIT, etc.
h, w = diffusion_model.input_shape[:2]
dummy_img = np.zeros((1, h, w), dtype=np.float32)
params = config.params
guidance_kwargs = {
"omega": params["guidance_kwargs"]["omega"],
"omega_vent": params["guidance_kwargs"].get("omega_vent", 1.0),
"omega_sept": params["guidance_kwargs"].get("omega_sept", 1.0),
"eta": params["guidance_kwargs"].get("eta", 1.0),
"smooth_l1_beta": params["guidance_kwargs"]["smooth_l1_beta"],
}
seed = jax.random.PRNGKey(config.seed)
run(
hazy_images=dummy_img,
diffusion_model=diffusion_model,
seed=seed,
guidance_kwargs=guidance_kwargs,
mask_params=params["mask_params"],
fixed_mask_params=params["fixed_mask_params"],
skeleton_params=params["skeleton_params"],
batch_size=1,
diffusion_steps=1,
verbose=False,
)
model_loaded = True
return config, diffusion_model
@spaces.GPU(duration=30)
def process_image(input_img, diffusion_steps, omega, omega_vent, omega_sept, eta):
global config, diffusion_model, model_loaded
if not model_loaded:
yield (
gr.update(
value=f'<div style="background:#ffeeba;{STATUS_STYLE}color:#856404;">⏳ Model is still loading. Please wait...</div>'
),
None,
)
return
if input_img is None:
yield (
gr.update(
value=f'<div style="background:#ffeeba;{STATUS_STYLE}color:#856404;">⚠️ No input image was provided. Please select or upload an image before running.</div>'
),
None,
)
return
params = config.params
def _prepare_image(image):
resized = False
if image.mode != "L":
image = image.convert("L")
orig_shape = image.size[::-1]
h, w = diffusion_model.input_shape[:2]
if image.size != (w, h):
image = image.resize((w, h), Image.BILINEAR)
resized = True
image = np.array(image)
image = image.astype(np.float32)
image = image[None, ...]
return image, resized, orig_shape
try:
image, resized, orig_shape = _prepare_image(input_img)
except Exception as e:
yield (
gr.update(
value=f'<div style="background:#f8d7da;{STATUS_STYLE}color:#721c24;">❌ Error preparing input image: {e}</div>'
),
None,
)
return
guidance_kwargs = {
"omega": omega,
"omega_vent": omega_vent,
"omega_sept": omega_sept,
"eta": eta,
"smooth_l1_beta": params["guidance_kwargs"]["smooth_l1_beta"],
}
seed = jax.random.PRNGKey(config.seed)
try:
yield (
gr.update(
value=f'<div style="background:#cce5ff;{STATUS_STYLE}color:#004085;">🌀 Running dehazing algorithm...</div>'
),
None,
)
_, pred_tissue_images, *_ = run(
hazy_images=image,
diffusion_model=diffusion_model,
seed=seed,
guidance_kwargs=guidance_kwargs,
mask_params=params["mask_params"],
fixed_mask_params=params["fixed_mask_params"],
skeleton_params=params["skeleton_params"],
batch_size=1,
diffusion_steps=diffusion_steps,
threshold_output_quantile=params.get("threshold_output_quantile", None),
preserve_bottom_percent=params.get("preserve_bottom_percent", 30.0),
bottom_transition_width=params.get("bottom_transition_width", 10.0),
verbose=False,
)
except Exception as e:
yield (
gr.update(
value=f'<div style="background:#f8d7da;{STATUS_STYLE}color:#721c24;">❌ The algorithm failed to process the image: {e}</div>'
),
None,
)
return
out_img = np.squeeze(pred_tissue_images[0])
out_img = np.clip(out_img, 0, 255).astype(np.uint8)
out_pil = Image.fromarray(out_img)
if resized and out_pil.size != (orig_shape[1], orig_shape[0]):
out_pil = out_pil.resize((orig_shape[1], orig_shape[0]), Image.BILINEAR)
yield (
gr.update(
value=f'<div style="background:#d4edda;{STATUS_STYLE}color:#155724;">✅ Done!</div>'
),
(input_img, out_pil),
)
slider_params = Config.from_yaml(SLIDER_CONFIG_PATH)
diffusion_steps_default = slider_params["diffusion_steps"]["default"]
diffusion_steps_min = slider_params["diffusion_steps"]["min"]
diffusion_steps_max = slider_params["diffusion_steps"]["max"]
diffusion_steps_step = slider_params["diffusion_steps"]["step"]
omega_default = slider_params["omega"]["default"]
omega_min = slider_params["omega"]["min"]
omega_max = slider_params["omega"]["max"]
omega_step = slider_params["omega"]["step"]
omega_vent_default = slider_params["omega_vent"]["default"]
omega_vent_min = slider_params["omega_vent"]["min"]
omega_vent_max = slider_params["omega_vent"]["max"]
omega_vent_step = slider_params["omega_vent"]["step"]
omega_sept_default = slider_params["omega_sept"]["default"]
omega_sept_min = slider_params["omega_sept"]["min"]
omega_sept_max = slider_params["omega_sept"]["max"]
omega_sept_step = slider_params["omega_sept"]["step"]
eta_default = slider_params["eta"]["default"]
eta_min = slider_params["eta"]["min"]
eta_max = slider_params["eta"]["max"]
eta_step = slider_params["eta"]["step"]
example_image_paths = [
os.path.join(ASSETS_DIR, f)
for f in os.listdir(ASSETS_DIR)
if f.lower().endswith(".png")
]
example_images = [load_image(p) for p in example_image_paths]
examples = [[img] for img in example_images]
with gr.Blocks() as demo:
gr.Markdown(description)
status = gr.Markdown(
f'<div style="background:#ffeeba;{STATUS_STYLE_LOAD}color:#856404;">⏳ Loading model...</div>',
visible=True,
)
with gr.Row():
with gr.Column():
img1 = gr.Image(
label="Input Image",
type="pil",
webcam_options=False,
value=example_images[0] if example_images else None,
)
gr.Examples(examples=examples, inputs=[img1])
with gr.Column():
img2 = gr.ImageSlider(label="Dehazed Image", type="pil")
with gr.Row():
diffusion_steps_slider = gr.Slider(
minimum=diffusion_steps_min,
maximum=diffusion_steps_max,
step=diffusion_steps_step,
value=diffusion_steps_default,
label="Diffusion Steps",
)
omega_slider = gr.Slider(
minimum=omega_min,
maximum=omega_max,
step=omega_step,
value=omega_default,
label="Omega (background)",
)
omega_vent_slider = gr.Slider(
minimum=omega_vent_min,
maximum=omega_vent_max,
step=omega_vent_step,
value=omega_vent_default,
label="Omega Ventricle",
)
omega_sept_slider = gr.Slider(
minimum=omega_sept_min,
maximum=omega_sept_max,
step=omega_sept_step,
value=omega_sept_default,
label="Omega Septum",
)
eta_slider = gr.Slider(
minimum=eta_min,
maximum=eta_max,
step=eta_step,
value=eta_default,
label="Eta (haze prior)",
)
run_btn = gr.Button("Run", interactive=False)
run_btn.click(
process_image,
inputs=[
img1,
diffusion_steps_slider,
omega_slider,
omega_vent_slider,
omega_sept_slider,
eta_slider,
],
outputs=[status, img2],
queue=True,
)
def load_model_event():
global config, diffusion_model, model_loaded, DEVICE
try:
if DEVICE is None:
DEVICE = init_device()
config, diffusion_model = initialize_model()
ready_msg = gr.update(
value=f'<div style="background:#d4edda;{STATUS_STYLE}color:#155724;">✅ Model loaded! You can now press Run.</div>'
)
return ready_msg, gr.update(interactive=True)
except Exception as e:
return gr.update(
value=f'<div style="background:#f8d7da;{STATUS_STYLE}color:#721c24;">❌ Error loading model: {e}</div>'
), gr.update(interactive=False)
demo.load(
load_model_event,
inputs=None,
outputs=[status, run_btn],
)
if __name__ == "__main__":
demo.launch()
|