Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -34,89 +34,68 @@ scheduler_config = {
|
|
| 34 |
"use_karras_sigmas": False,
|
| 35 |
}
|
| 36 |
|
| 37 |
-
# Initialize scheduler
|
| 38 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 39 |
|
| 40 |
-
# Load
|
| 41 |
-
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
pipe.load_lora_weights(
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
pipe.fuse_lora(lora_scale=0.8)
|
| 49 |
-
|
| 50 |
-
# Apply the same optimizations from the first version
|
| 51 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 52 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 53 |
-
|
| 54 |
-
# --- Ahead-of-time compilation ---
|
| 55 |
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
|
| 56 |
|
| 57 |
-
# ---
|
| 58 |
MAX_SEED = np.iinfo(np.int32).max
|
| 59 |
-
|
| 60 |
-
# 固定プロンプト定義
|
| 61 |
PROMPTS = {
|
| 62 |
-
"front": "Move the camera to a front-facing position so the full body of the character is visible.
|
| 63 |
-
"back": "Move the camera to a back-facing position so the full body of the character is visible.
|
| 64 |
-
"left": "Move the camera to a side view (profile) from the left so the full body of the character is visible.
|
| 65 |
-
"right": "Move the camera to a side view (profile) from the right so the full body of the character is visible.
|
| 66 |
}
|
| 67 |
|
| 68 |
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
|
| 69 |
-
"""
|
| 70 |
-
negative_prompt = " "
|
| 71 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 72 |
-
|
| 73 |
-
print(f"Generating with prompt: '{prompt}'")
|
| 74 |
-
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
|
| 75 |
-
|
| 76 |
-
# Generate the image
|
| 77 |
result = pipe(
|
| 78 |
image=input_images if input_images else None,
|
| 79 |
prompt=prompt,
|
| 80 |
-
|
| 81 |
-
width=None,
|
| 82 |
-
negative_prompt=negative_prompt,
|
| 83 |
num_inference_steps=num_inference_steps,
|
| 84 |
generator=generator,
|
| 85 |
true_cfg_scale=true_guidance_scale,
|
| 86 |
num_images_per_prompt=1,
|
| 87 |
).images
|
| 88 |
-
|
| 89 |
return result[0]
|
| 90 |
|
| 91 |
-
# --- NEW: 横連結ユーティリティ ---
|
| 92 |
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
|
| 93 |
-
"""
|
| 94 |
-
複数のPIL画像を横に連結して1枚のPIL画像を返す。
|
| 95 |
-
すべて同じ高さにスケールしてアスペクト比は維持。
|
| 96 |
-
"""
|
| 97 |
images = [img.convert("RGB") for img in images if img is not None]
|
| 98 |
if not images:
|
| 99 |
return None
|
| 100 |
-
|
| 101 |
-
# 連結の基準高さ(最大の高さ)に合わせて横幅を等比リサイズ
|
| 102 |
-
target_h = max(img.height for img in images)
|
| 103 |
resized = []
|
| 104 |
for img in images:
|
| 105 |
-
if img.height !=
|
| 106 |
-
|
| 107 |
-
img = img.resize((
|
| 108 |
resized.append(img)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
canvas = Image.new("RGB", (total_w, target_h), bg_color)
|
| 112 |
-
|
| 113 |
x = 0
|
| 114 |
for img in resized:
|
| 115 |
canvas.paste(img, (x, 0))
|
| 116 |
x += img.width
|
| 117 |
return canvas
|
| 118 |
|
| 119 |
-
# --- Main Inference Function ---
|
| 120 |
@spaces.GPU(duration=300)
|
| 121 |
def generate_turnaround(
|
| 122 |
image,
|
|
@@ -126,139 +105,68 @@ def generate_turnaround(
|
|
| 126 |
num_inference_steps=4,
|
| 127 |
progress=gr.Progress(track_tqdm=True),
|
| 128 |
):
|
| 129 |
-
"""
|
| 130 |
-
入力画像から4つの視点(正面、背面、左側面、右側面)の立ち絵を生成
|
| 131 |
-
さらに「正面 → 右向き → 背面 → 左向き」を横並びで連結した画像も返す
|
| 132 |
-
"""
|
| 133 |
if randomize_seed:
|
| 134 |
seed = random.randint(0, MAX_SEED)
|
| 135 |
-
|
| 136 |
-
# 入力画像の確認
|
| 137 |
if image is None:
|
| 138 |
return None, None, None, None, None, seed, "エラー: 入力画像をアップロードしてください"
|
| 139 |
-
|
| 140 |
-
# PIL画像として処理
|
| 141 |
if isinstance(image, Image.Image):
|
| 142 |
input_image = image.convert("RGB")
|
| 143 |
else:
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
except:
|
| 147 |
-
return None, None, None, None, None, seed, "エラー: 画像の読み込みに失敗しました"
|
| 148 |
-
|
| 149 |
pil_images = [input_image]
|
| 150 |
-
|
| 151 |
-
# 1. 正面立ち絵を生成
|
| 152 |
-
progress(0.25, desc="正面立ち絵を生成中...")
|
| 153 |
-
front_image = generate_single_view(pil_images, PROMPTS["front"], seed, num_inference_steps, true_guidance_scale)
|
| 154 |
-
|
| 155 |
-
# 2. 正面立ち絵を入力として背面を生成
|
| 156 |
-
progress(0.50, desc="背面立ち絵を生成中...")
|
| 157 |
-
back_image = generate_single_view([front_image], PROMPTS["back"], seed+1, num_inference_steps, true_guidance_scale)
|
| 158 |
-
|
| 159 |
-
# 3. 正面立ち絵を入力として左側面を生成
|
| 160 |
-
progress(0.75, desc="左側面立ち絵を生成中...")
|
| 161 |
-
left_image = generate_single_view([front_image], PROMPTS["left"], seed+2, num_inference_steps, true_guidance_scale)
|
| 162 |
-
|
| 163 |
-
# 4. 正面立ち絵を入力として右側面を生成
|
| 164 |
-
progress(1.0, desc="右側面立ち絵を生成中...")
|
| 165 |
-
right_image = generate_single_view([front_image], PROMPTS["right"], seed+3, num_inference_steps, true_guidance_scale)
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
|
|
|
|
| 171 |
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
css = """
|
| 174 |
-
#col-container {
|
| 175 |
-
|
| 176 |
-
max-width: 1400px;
|
| 177 |
-
}
|
| 178 |
-
.view-label {
|
| 179 |
-
text-align: center;
|
| 180 |
-
font-weight: bold;
|
| 181 |
-
margin-top: 10px;
|
| 182 |
-
}
|
| 183 |
-
/* 画像のアスペクト比を保持 */
|
| 184 |
-
.image-container img {
|
| 185 |
-
object-fit: contain !important;
|
| 186 |
-
max-width: 100%;
|
| 187 |
-
max-height: 100%;
|
| 188 |
-
}
|
| 189 |
"""
|
| 190 |
|
| 191 |
with gr.Blocks(css=css) as demo:
|
| 192 |
-
gr.Markdown("# キャラクター4
|
| 193 |
-
gr.Markdown("
|
| 194 |
|
| 195 |
with gr.Column(elem_id="col-container"):
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
label="入力画像(キャラクター画像をアップロード)",
|
| 199 |
-
show_label=True,
|
| 200 |
-
type="pil",
|
| 201 |
-
height=500,
|
| 202 |
-
sources=["upload", "clipboard"]
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
run_button = gr.Button("🎨 4視点立ち絵を生成", variant="primary", size="lg")
|
| 206 |
-
|
| 207 |
status_text = gr.Textbox(label="ステータス", interactive=False)
|
| 208 |
-
|
| 209 |
with gr.Row():
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
with gr.Column():
|
| 213 |
-
result_back = gr.Image(label="背面", type="pil", height=500, show_download_button=True, container=True, image_mode="RGB")
|
| 214 |
-
|
| 215 |
with gr.Row():
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
with gr.Column():
|
| 219 |
-
result_right = gr.Image(label="右側面", type="pil", height=500, show_download_button=True, container=True, image_mode="RGB")
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
result_concat = gr.Image(label="
|
| 223 |
|
| 224 |
with gr.Accordion("⚙️ 詳細設定", open=False):
|
| 225 |
-
seed = gr.Slider(
|
| 226 |
-
label="Seed",
|
| 227 |
-
minimum=0,
|
| 228 |
-
maximum=MAX_SEED,
|
| 229 |
-
step=1,
|
| 230 |
-
value=0,
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
randomize_seed = gr.Checkbox(label="ランダムシード", value=True)
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
true_guidance_scale = gr.Slider(
|
| 237 |
-
label="True guidance scale",
|
| 238 |
-
minimum=1.0,
|
| 239 |
-
maximum=10.0,
|
| 240 |
-
step=0.1,
|
| 241 |
-
value=1.0
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
num_inference_steps = gr.Slider(
|
| 245 |
-
label="生成ステップ数",
|
| 246 |
-
minimum=1,
|
| 247 |
-
maximum=40,
|
| 248 |
-
step=1,
|
| 249 |
-
value=4,
|
| 250 |
-
)
|
| 251 |
|
| 252 |
run_button.click(
|
| 253 |
fn=generate_turnaround,
|
| 254 |
-
inputs=[
|
| 255 |
-
input_image,
|
| 256 |
-
seed,
|
| 257 |
-
randomize_seed,
|
| 258 |
-
true_guidance_scale,
|
| 259 |
-
num_inference_steps,
|
| 260 |
-
],
|
| 261 |
-
# --- NEW: 5つ目の出力として連結画像を追加 ---
|
| 262 |
outputs=[result_front, result_back, result_left, result_right, result_concat, seed, status_text],
|
| 263 |
)
|
| 264 |
|
|
|
|
| 34 |
"use_karras_sigmas": False,
|
| 35 |
}
|
| 36 |
|
| 37 |
+
# Initialize scheduler
|
| 38 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 39 |
|
| 40 |
+
# Load model
|
| 41 |
+
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 42 |
+
"Qwen/Qwen-Image-Edit-2509",
|
| 43 |
+
scheduler=scheduler,
|
| 44 |
+
torch_dtype=dtype
|
| 45 |
+
).to(device)
|
| 46 |
+
|
| 47 |
pipe.load_lora_weights(
|
| 48 |
+
"2vXpSwA7/iroiro-lora",
|
| 49 |
+
weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
|
| 50 |
+
)
|
| 51 |
pipe.fuse_lora(lora_scale=0.8)
|
|
|
|
|
|
|
| 52 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 53 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
|
|
|
|
|
|
| 54 |
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
|
| 55 |
|
| 56 |
+
# --- Constants ---
|
| 57 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
| 58 |
PROMPTS = {
|
| 59 |
+
"front": "Move the camera to a front-facing position so the full body of the character is visible. Background is plain white.",
|
| 60 |
+
"back": "Move the camera to a back-facing position so the full body of the character is visible. Background is plain white.",
|
| 61 |
+
"left": "Move the camera to a side view (profile) from the left so the full body of the character is visible. Background is plain white.",
|
| 62 |
+
"right": "Move the camera to a side view (profile) from the right so the full body of the character is visible. Background is plain white."
|
| 63 |
}
|
| 64 |
|
| 65 |
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
|
| 66 |
+
"""単一視点画像生成"""
|
|
|
|
| 67 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
result = pipe(
|
| 69 |
image=input_images if input_images else None,
|
| 70 |
prompt=prompt,
|
| 71 |
+
negative_prompt=" ",
|
|
|
|
|
|
|
| 72 |
num_inference_steps=num_inference_steps,
|
| 73 |
generator=generator,
|
| 74 |
true_cfg_scale=true_guidance_scale,
|
| 75 |
num_images_per_prompt=1,
|
| 76 |
).images
|
|
|
|
| 77 |
return result[0]
|
| 78 |
|
|
|
|
| 79 |
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
|
| 80 |
+
"""画像を横に連結"""
|
|
|
|
|
|
|
|
|
|
| 81 |
images = [img.convert("RGB") for img in images if img is not None]
|
| 82 |
if not images:
|
| 83 |
return None
|
| 84 |
+
h = max(img.height for img in images)
|
|
|
|
|
|
|
| 85 |
resized = []
|
| 86 |
for img in images:
|
| 87 |
+
if img.height != h:
|
| 88 |
+
w = int(img.width * (h / img.height))
|
| 89 |
+
img = img.resize((w, h), Image.LANCZOS)
|
| 90 |
resized.append(img)
|
| 91 |
+
w_total = sum(img.width for img in resized)
|
| 92 |
+
canvas = Image.new("RGB", (w_total, h), bg_color)
|
|
|
|
|
|
|
| 93 |
x = 0
|
| 94 |
for img in resized:
|
| 95 |
canvas.paste(img, (x, 0))
|
| 96 |
x += img.width
|
| 97 |
return canvas
|
| 98 |
|
|
|
|
| 99 |
@spaces.GPU(duration=300)
|
| 100 |
def generate_turnaround(
|
| 101 |
image,
|
|
|
|
| 105 |
num_inference_steps=4,
|
| 106 |
progress=gr.Progress(track_tqdm=True),
|
| 107 |
):
|
| 108 |
+
"""4視点+横連結PNG生成"""
|
|
|
|
|
|
|
|
|
|
| 109 |
if randomize_seed:
|
| 110 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
| 111 |
if image is None:
|
| 112 |
return None, None, None, None, None, seed, "エラー: 入力画像をアップロードしてください"
|
| 113 |
+
|
|
|
|
| 114 |
if isinstance(image, Image.Image):
|
| 115 |
input_image = image.convert("RGB")
|
| 116 |
else:
|
| 117 |
+
input_image = Image.open(image).convert("RGB")
|
| 118 |
+
|
|
|
|
|
|
|
|
|
|
| 119 |
pil_images = [input_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
progress(0.25, desc="正面生成中...")
|
| 122 |
+
front = generate_single_view(pil_images, PROMPTS["front"], seed, num_inference_steps, true_guidance_scale)
|
| 123 |
+
|
| 124 |
+
progress(0.5, desc="背面生成中...")
|
| 125 |
+
back = generate_single_view([front], PROMPTS["back"], seed+1, num_inference_steps, true_guidance_scale)
|
| 126 |
|
| 127 |
+
progress(0.75, desc="左側面生成中...")
|
| 128 |
+
left = generate_single_view([front], PROMPTS["left"], seed+2, num_inference_steps, true_guidance_scale)
|
| 129 |
|
| 130 |
+
progress(1.0, desc="右側面生成中...")
|
| 131 |
+
right = generate_single_view([front], PROMPTS["right"], seed+3, num_inference_steps, true_guidance_scale)
|
| 132 |
+
|
| 133 |
+
concat = concat_images_horizontally([front, right, back, left])
|
| 134 |
+
return front, back, left, right, concat, seed, "✅ PNG形式で4視点+連結画像を生成しました"
|
| 135 |
+
|
| 136 |
+
# --- UI ---
|
| 137 |
css = """
|
| 138 |
+
#col-container {margin: 0 auto; max-width: 1400px;}
|
| 139 |
+
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
"""
|
| 141 |
|
| 142 |
with gr.Blocks(css=css) as demo:
|
| 143 |
+
gr.Markdown("# キャラクター4視点立ち絵自動生成(PNG出力対応)")
|
| 144 |
+
gr.Markdown("アップロードしたキャラクター画像から正面・背面・左右側面、さらに4枚連結のPNG画像を出力します。")
|
| 145 |
|
| 146 |
with gr.Column(elem_id="col-container"):
|
| 147 |
+
input_image = gr.Image(label="入力画像", type="pil", height=500)
|
| 148 |
+
run_button = gr.Button("🎨 生成開始", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
status_text = gr.Textbox(label="ステータス", interactive=False)
|
| 150 |
+
|
| 151 |
with gr.Row():
|
| 152 |
+
result_front = gr.Image(label="正面", type="pil", format="png", height=400, show_download_button=True)
|
| 153 |
+
result_back = gr.Image(label="背面", type="pil", format="png", height=400, show_download_button=True)
|
|
|
|
|
|
|
|
|
|
| 154 |
with gr.Row():
|
| 155 |
+
result_left = gr.Image(label="左側面", type="pil", format="png", height=400, show_download_button=True)
|
| 156 |
+
result_right = gr.Image(label="右側面", type="pil", format="png", height=400, show_download_button=True)
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
# PNG連結出力
|
| 159 |
+
result_concat = gr.Image(label="連結画像(正面→右→背面→左)", type="pil", format="png", height=400, show_download_button=True)
|
| 160 |
|
| 161 |
with gr.Accordion("⚙️ 詳細設定", open=False):
|
| 162 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
randomize_seed = gr.Checkbox(label="ランダムシード", value=True)
|
| 164 |
+
true_guidance_scale = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
|
| 165 |
+
num_inference_steps = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
run_button.click(
|
| 168 |
fn=generate_turnaround,
|
| 169 |
+
inputs=[input_image, seed, randomize_seed, true_guidance_scale, num_inference_steps],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
outputs=[result_front, result_back, result_left, result_right, result_concat, seed, status_text],
|
| 171 |
)
|
| 172 |
|