Spaces:
Sleeping
Sleeping
GAIA Developer
Claude
commited on
Commit
ยท
1a3088a
1
Parent(s):
1fc2038
๐ feat: Add comprehensive GAIA evaluation system and batch testing infrastructure
Browse files- Add GAIAEvaluator with performance analysis, metrics, and visualizations
- Add improved batch testing system with async processing support
- Support detailed question analysis and comparative evaluation
- Include test session logging and performance tracking
๐ค Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- app/gaia_evaluator.py +740 -0
- app/improved_gaia_batch_test.py +0 -0
app/gaia_evaluator.py
ADDED
|
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
GAIA Evaluator
|
| 4 |
+
A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict, List, Any, Optional, Tuple
|
| 11 |
+
import statistics
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
from answer_validator import AnswerValidator
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class GAIAEvaluator:
|
| 22 |
+
"""
|
| 23 |
+
A comprehensive evaluation system for GAIA benchmark performance analysis.
|
| 24 |
+
Provides detailed metrics, visualizations, and comparative analysis.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self,
|
| 28 |
+
results_dir: Optional[str] = None,
|
| 29 |
+
validation_file: Optional[str] = "gaia_validation_metadata.jsonl"):
|
| 30 |
+
"""
|
| 31 |
+
Initialize the GAIA evaluator.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
results_dir: Directory containing test results (None to provide later)
|
| 35 |
+
validation_file: Path to validation metadata file
|
| 36 |
+
"""
|
| 37 |
+
self.logger = logging.getLogger("GAIAEvaluator")
|
| 38 |
+
self.results_dir = Path(results_dir) if results_dir else None
|
| 39 |
+
self.validation_file = Path(validation_file) if validation_file else None
|
| 40 |
+
self.validator = AnswerValidator()
|
| 41 |
+
|
| 42 |
+
# Performance metrics
|
| 43 |
+
self.metrics = {}
|
| 44 |
+
self.question_details = {}
|
| 45 |
+
self.validation_data = {}
|
| 46 |
+
|
| 47 |
+
# Load validation data if provided
|
| 48 |
+
if self.validation_file and self.validation_file.exists():
|
| 49 |
+
self._load_validation_data()
|
| 50 |
+
|
| 51 |
+
def _load_validation_data(self) -> None:
|
| 52 |
+
"""Load validation data from JSONL file."""
|
| 53 |
+
self.logger.info(f"Loading validation data from {self.validation_file}")
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
with open(self.validation_file, 'r') as f:
|
| 57 |
+
for line in f:
|
| 58 |
+
try:
|
| 59 |
+
entry = json.loads(line)
|
| 60 |
+
question_id = entry.get('question_id')
|
| 61 |
+
if question_id:
|
| 62 |
+
self.validation_data[question_id] = entry
|
| 63 |
+
except json.JSONDecodeError:
|
| 64 |
+
self.logger.warning(f"Could not parse line in validation file: {line[:50]}...")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
self.logger.error(f"Error loading validation data: {e}")
|
| 67 |
+
|
| 68 |
+
def set_results_directory(self, results_dir: str) -> None:
|
| 69 |
+
"""Set or update the results directory."""
|
| 70 |
+
self.results_dir = Path(results_dir)
|
| 71 |
+
|
| 72 |
+
def load_results(self, results_file: Optional[str] = None) -> Dict:
|
| 73 |
+
"""
|
| 74 |
+
Load test results from the specified file or search for it.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
results_file: Specific results file to load (None to search in results_dir)
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
Dict of loaded results
|
| 81 |
+
"""
|
| 82 |
+
if results_file:
|
| 83 |
+
file_path = Path(results_file)
|
| 84 |
+
elif self.results_dir:
|
| 85 |
+
# Find the most recent results.json file
|
| 86 |
+
json_files = list(self.results_dir.glob("**/results.json"))
|
| 87 |
+
if not json_files:
|
| 88 |
+
self.logger.error(f"No results.json files found in {self.results_dir}")
|
| 89 |
+
return {}
|
| 90 |
+
|
| 91 |
+
# Sort by modification time, newest first
|
| 92 |
+
file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0]
|
| 93 |
+
else:
|
| 94 |
+
self.logger.error("No results directory or file specified")
|
| 95 |
+
return {}
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
self.logger.info(f"Loading results from {file_path}")
|
| 99 |
+
with open(file_path, 'r') as f:
|
| 100 |
+
results = json.load(f)
|
| 101 |
+
return results
|
| 102 |
+
except Exception as e:
|
| 103 |
+
self.logger.error(f"Error loading results: {e}")
|
| 104 |
+
return {}
|
| 105 |
+
|
| 106 |
+
def evaluate(self, results: Dict = None) -> Dict:
|
| 107 |
+
"""
|
| 108 |
+
Evaluate GAIA test results with comprehensive metrics.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
results: Test results dict (None to load from file)
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Dict of evaluation metrics
|
| 115 |
+
"""
|
| 116 |
+
if not results:
|
| 117 |
+
results = self.load_results()
|
| 118 |
+
if not results:
|
| 119 |
+
return {}
|
| 120 |
+
|
| 121 |
+
# Calculate basic metrics
|
| 122 |
+
total_questions = len(results)
|
| 123 |
+
correct_answers = 0
|
| 124 |
+
partial_answers = 0
|
| 125 |
+
incorrect_answers = 0
|
| 126 |
+
errors = 0
|
| 127 |
+
timeouts = 0
|
| 128 |
+
|
| 129 |
+
classification_accuracy = 0
|
| 130 |
+
total_classified = 0
|
| 131 |
+
|
| 132 |
+
processing_times = []
|
| 133 |
+
confidence_scores = []
|
| 134 |
+
|
| 135 |
+
# Analyze each question
|
| 136 |
+
question_metrics = {}
|
| 137 |
+
for question_id, data in results.items():
|
| 138 |
+
# Extract validation status
|
| 139 |
+
validation = data.get('validation', {})
|
| 140 |
+
validation_status = validation.get('validation_status', 'error')
|
| 141 |
+
|
| 142 |
+
# Basic counters
|
| 143 |
+
if validation_status == 'correct':
|
| 144 |
+
correct_answers += 1
|
| 145 |
+
elif validation_status == 'partial':
|
| 146 |
+
partial_answers += 1
|
| 147 |
+
elif validation_status == 'incorrect':
|
| 148 |
+
incorrect_answers += 1
|
| 149 |
+
elif validation_status == 'error':
|
| 150 |
+
errors += 1
|
| 151 |
+
elif validation_status == 'timeout':
|
| 152 |
+
timeouts += 1
|
| 153 |
+
|
| 154 |
+
# Track processing time
|
| 155 |
+
if 'processing_time' in data:
|
| 156 |
+
processing_times.append(data['processing_time'])
|
| 157 |
+
|
| 158 |
+
# Track confidence scores
|
| 159 |
+
if 'confidence_score' in validation:
|
| 160 |
+
confidence_scores.append(validation['confidence_score'])
|
| 161 |
+
|
| 162 |
+
# Track classification accuracy
|
| 163 |
+
if 'classification' in data:
|
| 164 |
+
classification_data = data['classification']
|
| 165 |
+
total_classified += 1
|
| 166 |
+
if classification_data.get('is_correct', False):
|
| 167 |
+
classification_accuracy += 1
|
| 168 |
+
|
| 169 |
+
# Store detailed metrics per question
|
| 170 |
+
question_metrics[question_id] = {
|
| 171 |
+
'validation_status': validation_status,
|
| 172 |
+
'processing_time': data.get('processing_time'),
|
| 173 |
+
'confidence_score': validation.get('confidence_score'),
|
| 174 |
+
'classification': data.get('classification', {}).get('classification'),
|
| 175 |
+
'is_classification_correct': data.get('classification', {}).get('is_correct', False),
|
| 176 |
+
'tools_used': data.get('tools_used', []),
|
| 177 |
+
'steps_count': len(data.get('steps', [])),
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
# Calculate derived metrics
|
| 181 |
+
accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0
|
| 182 |
+
success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0
|
| 183 |
+
classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0
|
| 184 |
+
|
| 185 |
+
avg_processing_time = statistics.mean(processing_times) if processing_times else 0
|
| 186 |
+
median_processing_time = statistics.median(processing_times) if processing_times else 0
|
| 187 |
+
|
| 188 |
+
avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0
|
| 189 |
+
|
| 190 |
+
# Store metrics
|
| 191 |
+
self.metrics = {
|
| 192 |
+
'total_questions': total_questions,
|
| 193 |
+
'correct_answers': correct_answers,
|
| 194 |
+
'partial_answers': partial_answers,
|
| 195 |
+
'incorrect_answers': incorrect_answers,
|
| 196 |
+
'errors': errors,
|
| 197 |
+
'timeouts': timeouts,
|
| 198 |
+
'accuracy': accuracy,
|
| 199 |
+
'success_rate': success_rate,
|
| 200 |
+
'classification_accuracy': classification_accuracy_pct,
|
| 201 |
+
'avg_processing_time': avg_processing_time,
|
| 202 |
+
'median_processing_time': median_processing_time,
|
| 203 |
+
'avg_confidence_score': avg_confidence,
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
self.question_details = question_metrics
|
| 207 |
+
|
| 208 |
+
return self.metrics
|
| 209 |
+
|
| 210 |
+
def visualize_performance(self, output_dir: Optional[str] = None) -> None:
|
| 211 |
+
"""
|
| 212 |
+
Generate visualizations of performance metrics.
|
| 213 |
+
|
| 214 |
+
Args:
|
| 215 |
+
output_dir: Directory to save visualizations (None to use results_dir)
|
| 216 |
+
"""
|
| 217 |
+
if not self.metrics:
|
| 218 |
+
self.logger.error("No metrics available. Run evaluate() first.")
|
| 219 |
+
return
|
| 220 |
+
|
| 221 |
+
if not output_dir:
|
| 222 |
+
output_dir = self.results_dir
|
| 223 |
+
|
| 224 |
+
output_path = Path(output_dir)
|
| 225 |
+
output_path.mkdir(exist_ok=True)
|
| 226 |
+
|
| 227 |
+
# Set the style
|
| 228 |
+
sns.set(style="whitegrid")
|
| 229 |
+
plt.rcParams.update({'font.size': 12})
|
| 230 |
+
|
| 231 |
+
# Create visualizations
|
| 232 |
+
self._create_accuracy_chart(output_path)
|
| 233 |
+
self._create_timing_chart(output_path)
|
| 234 |
+
self._create_question_type_chart(output_path)
|
| 235 |
+
self._create_confidence_distribution(output_path)
|
| 236 |
+
|
| 237 |
+
def _create_accuracy_chart(self, output_path: Path) -> None:
|
| 238 |
+
"""Create accuracy breakdown chart."""
|
| 239 |
+
categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout']
|
| 240 |
+
values = [
|
| 241 |
+
self.metrics['correct_answers'],
|
| 242 |
+
self.metrics['partial_answers'],
|
| 243 |
+
self.metrics['incorrect_answers'],
|
| 244 |
+
self.metrics['errors'],
|
| 245 |
+
self.metrics['timeouts']
|
| 246 |
+
]
|
| 247 |
+
|
| 248 |
+
plt.figure(figsize=(10, 6))
|
| 249 |
+
colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6']
|
| 250 |
+
|
| 251 |
+
ax = plt.bar(categories, values, color=colors)
|
| 252 |
+
|
| 253 |
+
for i, v in enumerate(values):
|
| 254 |
+
plt.text(i, v + 0.1, str(v), ha='center')
|
| 255 |
+
|
| 256 |
+
plt.title('Accuracy Breakdown')
|
| 257 |
+
plt.ylabel('Number of Questions')
|
| 258 |
+
plt.tight_layout()
|
| 259 |
+
plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300)
|
| 260 |
+
plt.close()
|
| 261 |
+
|
| 262 |
+
def _create_timing_chart(self, output_path: Path) -> None:
|
| 263 |
+
"""Create timing analysis chart."""
|
| 264 |
+
if not self.question_details:
|
| 265 |
+
return
|
| 266 |
+
|
| 267 |
+
# Extract times and statuses
|
| 268 |
+
times = []
|
| 269 |
+
statuses = []
|
| 270 |
+
labels = []
|
| 271 |
+
|
| 272 |
+
for q_id, details in self.question_details.items():
|
| 273 |
+
if details.get('processing_time'):
|
| 274 |
+
times.append(details['processing_time'])
|
| 275 |
+
statuses.append(details['validation_status'])
|
| 276 |
+
labels.append(q_id)
|
| 277 |
+
|
| 278 |
+
if not times:
|
| 279 |
+
return
|
| 280 |
+
|
| 281 |
+
# Convert to dataframe
|
| 282 |
+
df = pd.DataFrame({
|
| 283 |
+
'Question': labels,
|
| 284 |
+
'Time (s)': times,
|
| 285 |
+
'Status': statuses
|
| 286 |
+
})
|
| 287 |
+
|
| 288 |
+
# Sort by time
|
| 289 |
+
df = df.sort_values('Time (s)', ascending=False)
|
| 290 |
+
|
| 291 |
+
plt.figure(figsize=(12, 8))
|
| 292 |
+
|
| 293 |
+
# Color mapping
|
| 294 |
+
color_map = {
|
| 295 |
+
'correct': '#2ecc71',
|
| 296 |
+
'partial': '#f39c12',
|
| 297 |
+
'incorrect': '#e74c3c',
|
| 298 |
+
'error': '#7f8c8d',
|
| 299 |
+
'timeout': '#95a5a6'
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
sns.barplot(x='Time (s)', y='Question', hue='Status', data=df,
|
| 303 |
+
palette=color_map, dodge=False)
|
| 304 |
+
|
| 305 |
+
plt.title('Processing Time by Question')
|
| 306 |
+
plt.tight_layout()
|
| 307 |
+
plt.savefig(output_path / 'processing_times.png', dpi=300)
|
| 308 |
+
plt.close()
|
| 309 |
+
|
| 310 |
+
def _create_question_type_chart(self, output_path: Path) -> None:
|
| 311 |
+
"""Create question type performance chart."""
|
| 312 |
+
if not self.question_details:
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
# Group by classification type
|
| 316 |
+
question_types = {}
|
| 317 |
+
|
| 318 |
+
for q_id, details in self.question_details.items():
|
| 319 |
+
q_type = details.get('classification', 'unknown')
|
| 320 |
+
if q_type not in question_types:
|
| 321 |
+
question_types[q_type] = {
|
| 322 |
+
'total': 0,
|
| 323 |
+
'correct': 0,
|
| 324 |
+
'partial': 0,
|
| 325 |
+
'incorrect': 0,
|
| 326 |
+
'other': 0
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
question_types[q_type]['total'] += 1
|
| 330 |
+
|
| 331 |
+
status = details.get('validation_status')
|
| 332 |
+
if status == 'correct':
|
| 333 |
+
question_types[q_type]['correct'] += 1
|
| 334 |
+
elif status == 'partial':
|
| 335 |
+
question_types[q_type]['partial'] += 1
|
| 336 |
+
elif status == 'incorrect':
|
| 337 |
+
question_types[q_type]['incorrect'] += 1
|
| 338 |
+
else:
|
| 339 |
+
question_types[q_type]['other'] += 1
|
| 340 |
+
|
| 341 |
+
# Convert to dataframe
|
| 342 |
+
types = []
|
| 343 |
+
statuses = []
|
| 344 |
+
counts = []
|
| 345 |
+
|
| 346 |
+
for q_type, stats in question_types.items():
|
| 347 |
+
for status, count in stats.items():
|
| 348 |
+
if status != 'total':
|
| 349 |
+
types.append(q_type)
|
| 350 |
+
statuses.append(status)
|
| 351 |
+
counts.append(count)
|
| 352 |
+
|
| 353 |
+
df = pd.DataFrame({
|
| 354 |
+
'Question Type': types,
|
| 355 |
+
'Status': statuses,
|
| 356 |
+
'Count': counts
|
| 357 |
+
})
|
| 358 |
+
|
| 359 |
+
plt.figure(figsize=(12, 8))
|
| 360 |
+
|
| 361 |
+
# Create grouped bar chart
|
| 362 |
+
sns.barplot(x='Question Type', y='Count', hue='Status', data=df)
|
| 363 |
+
|
| 364 |
+
plt.title('Performance by Question Type')
|
| 365 |
+
plt.tight_layout()
|
| 366 |
+
plt.savefig(output_path / 'question_type_performance.png', dpi=300)
|
| 367 |
+
plt.close()
|
| 368 |
+
|
| 369 |
+
def _create_confidence_distribution(self, output_path: Path) -> None:
|
| 370 |
+
"""Create confidence score distribution chart."""
|
| 371 |
+
if not self.question_details:
|
| 372 |
+
return
|
| 373 |
+
|
| 374 |
+
# Extract confidence scores and statuses
|
| 375 |
+
scores = []
|
| 376 |
+
statuses = []
|
| 377 |
+
|
| 378 |
+
for details in self.question_details.values():
|
| 379 |
+
conf_score = details.get('confidence_score')
|
| 380 |
+
if conf_score is not None:
|
| 381 |
+
scores.append(conf_score)
|
| 382 |
+
statuses.append(details['validation_status'])
|
| 383 |
+
|
| 384 |
+
if not scores:
|
| 385 |
+
return
|
| 386 |
+
|
| 387 |
+
# Create dataframe
|
| 388 |
+
df = pd.DataFrame({
|
| 389 |
+
'Confidence Score': scores,
|
| 390 |
+
'Status': statuses
|
| 391 |
+
})
|
| 392 |
+
|
| 393 |
+
plt.figure(figsize=(10, 6))
|
| 394 |
+
|
| 395 |
+
# Create histogram with KDE
|
| 396 |
+
sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True)
|
| 397 |
+
|
| 398 |
+
plt.title('Confidence Score Distribution')
|
| 399 |
+
plt.tight_layout()
|
| 400 |
+
plt.savefig(output_path / 'confidence_distribution.png', dpi=300)
|
| 401 |
+
plt.close()
|
| 402 |
+
|
| 403 |
+
def generate_report(self, output_file: Optional[str] = None) -> str:
|
| 404 |
+
"""
|
| 405 |
+
Generate a comprehensive evaluation report.
|
| 406 |
+
|
| 407 |
+
Args:
|
| 408 |
+
output_file: Path to save the report (None for no saving)
|
| 409 |
+
|
| 410 |
+
Returns:
|
| 411 |
+
HTML report as string
|
| 412 |
+
"""
|
| 413 |
+
if not self.metrics:
|
| 414 |
+
self.logger.error("No metrics available. Run evaluate() first.")
|
| 415 |
+
return ""
|
| 416 |
+
|
| 417 |
+
# Create report HTML
|
| 418 |
+
report = f"""
|
| 419 |
+
<html>
|
| 420 |
+
<head>
|
| 421 |
+
<title>GAIA Performance Evaluation Report</title>
|
| 422 |
+
<style>
|
| 423 |
+
body {{ font-family: Arial, sans-serif; margin: 20px; }}
|
| 424 |
+
h1 {{ color: #2c3e50; }}
|
| 425 |
+
h2 {{ color: #3498db; }}
|
| 426 |
+
.metric-card {{
|
| 427 |
+
background-color: #f8f9fa;
|
| 428 |
+
border-radius: 8px;
|
| 429 |
+
padding: 15px;
|
| 430 |
+
margin-bottom: 20px;
|
| 431 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 432 |
+
}}
|
| 433 |
+
.metric-title {{ font-weight: bold; margin-bottom: 8px; }}
|
| 434 |
+
.metric-value {{ font-size: 24px; color: #2c3e50; }}
|
| 435 |
+
.good {{ color: #2ecc71; }}
|
| 436 |
+
.medium {{ color: #f39c12; }}
|
| 437 |
+
.poor {{ color: #e74c3c; }}
|
| 438 |
+
table {{ border-collapse: collapse; width: 100%; }}
|
| 439 |
+
th, td {{ padding: 12px; text-align: left; border-bottom: 1px solid #ddd; }}
|
| 440 |
+
th {{ background-color: #f2f2f2; }}
|
| 441 |
+
tr:hover {{background-color: #f5f5f5;}}
|
| 442 |
+
.chart-container {{ margin-top: 30px; margin-bottom: 30px; }}
|
| 443 |
+
.chart {{ max-width: 100%; height: auto; }}
|
| 444 |
+
</style>
|
| 445 |
+
</head>
|
| 446 |
+
<body>
|
| 447 |
+
<h1>GAIA Performance Evaluation Report</h1>
|
| 448 |
+
<p>Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
|
| 449 |
+
|
| 450 |
+
<div class="metric-card">
|
| 451 |
+
<h2>Summary Metrics</h2>
|
| 452 |
+
<div class="metric-row">
|
| 453 |
+
<div class="metric-title">Accuracy</div>
|
| 454 |
+
<div class="metric-value {self._get_color_class(self.metrics['accuracy'])}">
|
| 455 |
+
{self.metrics['accuracy']:.2f}%
|
| 456 |
+
</div>
|
| 457 |
+
</div>
|
| 458 |
+
<div class="metric-row">
|
| 459 |
+
<div class="metric-title">Success Rate (Correct + Partial)</div>
|
| 460 |
+
<div class="metric-value {self._get_color_class(self.metrics['success_rate'])}">
|
| 461 |
+
{self.metrics['success_rate']:.2f}%
|
| 462 |
+
</div>
|
| 463 |
+
</div>
|
| 464 |
+
<div class="metric-row">
|
| 465 |
+
<div class="metric-title">Classification Accuracy</div>
|
| 466 |
+
<div class="metric-value {self._get_color_class(self.metrics['classification_accuracy'])}">
|
| 467 |
+
{self.metrics['classification_accuracy']:.2f}%
|
| 468 |
+
</div>
|
| 469 |
+
</div>
|
| 470 |
+
<div class="metric-row">
|
| 471 |
+
<div class="metric-title">Average Processing Time</div>
|
| 472 |
+
<div class="metric-value">
|
| 473 |
+
{self.metrics['avg_processing_time']:.2f} seconds
|
| 474 |
+
</div>
|
| 475 |
+
</div>
|
| 476 |
+
</div>
|
| 477 |
+
|
| 478 |
+
<div class="metric-card">
|
| 479 |
+
<h2>Accuracy Breakdown</h2>
|
| 480 |
+
<table>
|
| 481 |
+
<tr>
|
| 482 |
+
<th>Metric</th>
|
| 483 |
+
<th>Count</th>
|
| 484 |
+
<th>Percentage</th>
|
| 485 |
+
</tr>
|
| 486 |
+
<tr>
|
| 487 |
+
<td>Correct Answers</td>
|
| 488 |
+
<td>{self.metrics['correct_answers']}</td>
|
| 489 |
+
<td>{(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
| 490 |
+
</tr>
|
| 491 |
+
<tr>
|
| 492 |
+
<td>Partial Answers</td>
|
| 493 |
+
<td>{self.metrics['partial_answers']}</td>
|
| 494 |
+
<td>{(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
| 495 |
+
</tr>
|
| 496 |
+
<tr>
|
| 497 |
+
<td>Incorrect Answers</td>
|
| 498 |
+
<td>{self.metrics['incorrect_answers']}</td>
|
| 499 |
+
<td>{(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
| 500 |
+
</tr>
|
| 501 |
+
<tr>
|
| 502 |
+
<td>Errors</td>
|
| 503 |
+
<td>{self.metrics['errors']}</td>
|
| 504 |
+
<td>{(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
| 505 |
+
</tr>
|
| 506 |
+
<tr>
|
| 507 |
+
<td>Timeouts</td>
|
| 508 |
+
<td>{self.metrics['timeouts']}</td>
|
| 509 |
+
<td>{(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
| 510 |
+
</tr>
|
| 511 |
+
</table>
|
| 512 |
+
</div>
|
| 513 |
+
|
| 514 |
+
<!-- Include charts if available -->
|
| 515 |
+
<div class="chart-container">
|
| 516 |
+
<h2>Performance Visualizations</h2>
|
| 517 |
+
<img class="chart" src="accuracy_breakdown.png" alt="Accuracy Breakdown" />
|
| 518 |
+
<img class="chart" src="processing_times.png" alt="Processing Times" />
|
| 519 |
+
<img class="chart" src="question_type_performance.png" alt="Question Type Performance" />
|
| 520 |
+
<img class="chart" src="confidence_distribution.png" alt="Confidence Distribution" />
|
| 521 |
+
</div>
|
| 522 |
+
|
| 523 |
+
<!-- Detailed results table -->
|
| 524 |
+
<div class="metric-card">
|
| 525 |
+
<h2>Detailed Question Results</h2>
|
| 526 |
+
<table>
|
| 527 |
+
<tr>
|
| 528 |
+
<th>Question ID</th>
|
| 529 |
+
<th>Status</th>
|
| 530 |
+
<th>Processing Time (s)</th>
|
| 531 |
+
<th>Confidence</th>
|
| 532 |
+
<th>Classification</th>
|
| 533 |
+
</tr>
|
| 534 |
+
{self._generate_question_rows()}
|
| 535 |
+
</table>
|
| 536 |
+
</div>
|
| 537 |
+
</body>
|
| 538 |
+
</html>
|
| 539 |
+
"""
|
| 540 |
+
|
| 541 |
+
# Save if output file provided
|
| 542 |
+
if output_file:
|
| 543 |
+
try:
|
| 544 |
+
with open(output_file, 'w') as f:
|
| 545 |
+
f.write(report)
|
| 546 |
+
self.logger.info(f"Report saved to {output_file}")
|
| 547 |
+
except Exception as e:
|
| 548 |
+
self.logger.error(f"Error saving report: {e}")
|
| 549 |
+
|
| 550 |
+
return report
|
| 551 |
+
|
| 552 |
+
def _get_color_class(self, value: float) -> str:
|
| 553 |
+
"""Get CSS class based on value."""
|
| 554 |
+
if value >= 80:
|
| 555 |
+
return "good"
|
| 556 |
+
elif value >= 60:
|
| 557 |
+
return "medium"
|
| 558 |
+
else:
|
| 559 |
+
return "poor"
|
| 560 |
+
|
| 561 |
+
def _generate_question_rows(self) -> str:
|
| 562 |
+
"""Generate HTML table rows for question details."""
|
| 563 |
+
rows = ""
|
| 564 |
+
for q_id, details in self.question_details.items():
|
| 565 |
+
status = details.get('validation_status', 'unknown')
|
| 566 |
+
proc_time = f"{details.get('processing_time', 'N/A'):.2f}" if details.get('processing_time') else 'N/A'
|
| 567 |
+
confidence = f"{details.get('confidence_score', 'N/A'):.2f}" if details.get('confidence_score') is not None else 'N/A'
|
| 568 |
+
classification = details.get('classification', 'unknown')
|
| 569 |
+
|
| 570 |
+
# Get status class
|
| 571 |
+
status_class = ""
|
| 572 |
+
if status == 'correct':
|
| 573 |
+
status_class = "good"
|
| 574 |
+
elif status == 'partial':
|
| 575 |
+
status_class = "medium"
|
| 576 |
+
elif status in ('incorrect', 'error', 'timeout'):
|
| 577 |
+
status_class = "poor"
|
| 578 |
+
|
| 579 |
+
rows += f"""
|
| 580 |
+
<tr>
|
| 581 |
+
<td>{q_id}</td>
|
| 582 |
+
<td class="{status_class}">{status}</td>
|
| 583 |
+
<td>{proc_time}</td>
|
| 584 |
+
<td>{confidence}</td>
|
| 585 |
+
<td>{classification}</td>
|
| 586 |
+
</tr>
|
| 587 |
+
"""
|
| 588 |
+
return rows
|
| 589 |
+
|
| 590 |
+
def compare_runs(self, results_files: List[str], labels: List[str]) -> Dict:
|
| 591 |
+
"""
|
| 592 |
+
Compare metrics across multiple test runs.
|
| 593 |
+
|
| 594 |
+
Args:
|
| 595 |
+
results_files: List of results files to compare
|
| 596 |
+
labels: Labels for each run
|
| 597 |
+
|
| 598 |
+
Returns:
|
| 599 |
+
Dict with comparison data
|
| 600 |
+
"""
|
| 601 |
+
if len(results_files) != len(labels):
|
| 602 |
+
self.logger.error("Number of result files must match number of labels")
|
| 603 |
+
return {}
|
| 604 |
+
|
| 605 |
+
comparison_data = {
|
| 606 |
+
'runs': {},
|
| 607 |
+
'metrics': ['accuracy', 'success_rate', 'classification_accuracy',
|
| 608 |
+
'avg_processing_time', 'correct_answers', 'partial_answers',
|
| 609 |
+
'incorrect_answers', 'errors', 'timeouts']
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
for i, (file_path, label) in enumerate(zip(results_files, labels)):
|
| 613 |
+
# Create a temporary evaluator to analyze this run
|
| 614 |
+
temp_evaluator = GAIAEvaluator(validation_file=self.validation_file)
|
| 615 |
+
results = temp_evaluator.load_results(file_path)
|
| 616 |
+
metrics = temp_evaluator.evaluate(results)
|
| 617 |
+
|
| 618 |
+
if metrics:
|
| 619 |
+
comparison_data['runs'][label] = metrics
|
| 620 |
+
|
| 621 |
+
return comparison_data
|
| 622 |
+
|
| 623 |
+
def visualize_comparison(self, comparison_data: Dict, output_dir: str) -> None:
|
| 624 |
+
"""
|
| 625 |
+
Create visualizations comparing multiple runs.
|
| 626 |
+
|
| 627 |
+
Args:
|
| 628 |
+
comparison_data: Data from compare_runs method
|
| 629 |
+
output_dir: Directory to save visualizations
|
| 630 |
+
"""
|
| 631 |
+
if not comparison_data or not comparison_data.get('runs'):
|
| 632 |
+
self.logger.error("No comparison data available")
|
| 633 |
+
return
|
| 634 |
+
|
| 635 |
+
output_path = Path(output_dir)
|
| 636 |
+
output_path.mkdir(exist_ok=True)
|
| 637 |
+
|
| 638 |
+
# Set style
|
| 639 |
+
sns.set(style="whitegrid")
|
| 640 |
+
plt.rcParams.update({'font.size': 12})
|
| 641 |
+
|
| 642 |
+
# Get run labels and metrics
|
| 643 |
+
run_labels = list(comparison_data['runs'].keys())
|
| 644 |
+
all_metrics = comparison_data['metrics']
|
| 645 |
+
|
| 646 |
+
# Create bar chart for key metrics
|
| 647 |
+
key_metrics = ['accuracy', 'success_rate', 'classification_accuracy']
|
| 648 |
+
|
| 649 |
+
# Extract data
|
| 650 |
+
metric_values = {metric: [] for metric in key_metrics}
|
| 651 |
+
|
| 652 |
+
for run_label in run_labels:
|
| 653 |
+
run_data = comparison_data['runs'][run_label]
|
| 654 |
+
for metric in key_metrics:
|
| 655 |
+
metric_values[metric].append(run_data.get(metric, 0))
|
| 656 |
+
|
| 657 |
+
# Create grouped bar chart
|
| 658 |
+
plt.figure(figsize=(12, 8))
|
| 659 |
+
x = np.arange(len(run_labels))
|
| 660 |
+
width = 0.25
|
| 661 |
+
|
| 662 |
+
for i, metric in enumerate(key_metrics):
|
| 663 |
+
plt.bar(x + i*width - width, metric_values[metric], width, label=metric.replace('_', ' ').title())
|
| 664 |
+
|
| 665 |
+
plt.xlabel('Test Run')
|
| 666 |
+
plt.ylabel('Percentage')
|
| 667 |
+
plt.title('Key Metrics Comparison')
|
| 668 |
+
plt.xticks(x, run_labels)
|
| 669 |
+
plt.legend()
|
| 670 |
+
plt.tight_layout()
|
| 671 |
+
plt.savefig(output_path / 'metrics_comparison.png', dpi=300)
|
| 672 |
+
plt.close()
|
| 673 |
+
|
| 674 |
+
# Create processing time comparison
|
| 675 |
+
times = [comparison_data['runs'][label].get('avg_processing_time', 0) for label in run_labels]
|
| 676 |
+
|
| 677 |
+
plt.figure(figsize=(10, 6))
|
| 678 |
+
plt.bar(run_labels, times)
|
| 679 |
+
plt.xlabel('Test Run')
|
| 680 |
+
plt.ylabel('Average Processing Time (s)')
|
| 681 |
+
plt.title('Processing Time Comparison')
|
| 682 |
+
plt.tight_layout()
|
| 683 |
+
plt.savefig(output_path / 'processing_time_comparison.png', dpi=300)
|
| 684 |
+
plt.close()
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
if __name__ == "__main__":
|
| 688 |
+
import argparse
|
| 689 |
+
|
| 690 |
+
# Configure logging
|
| 691 |
+
logging.basicConfig(
|
| 692 |
+
level=logging.INFO,
|
| 693 |
+
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
| 694 |
+
handlers=[logging.StreamHandler()]
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
# Parse arguments
|
| 698 |
+
parser = argparse.ArgumentParser(description="GAIA Benchmark Evaluation Tool")
|
| 699 |
+
parser.add_argument("--results_dir", type=str, help="Directory containing test results")
|
| 700 |
+
parser.add_argument("--results_file", type=str, help="Specific results file to evaluate")
|
| 701 |
+
parser.add_argument("--validation_file", type=str, default="gaia_validation_metadata.jsonl",
|
| 702 |
+
help="Path to validation metadata file")
|
| 703 |
+
parser.add_argument("--output_dir", type=str, help="Directory to save evaluation outputs")
|
| 704 |
+
parser.add_argument("--report_file", type=str, help="Path to save HTML report")
|
| 705 |
+
parser.add_argument("--compare", action="store_true", help="Compare multiple test runs")
|
| 706 |
+
parser.add_argument("--compare_files", type=str, nargs="+", help="List of files to compare")
|
| 707 |
+
parser.add_argument("--compare_labels", type=str, nargs="+", help="Labels for comparison runs")
|
| 708 |
+
|
| 709 |
+
args = parser.parse_args()
|
| 710 |
+
|
| 711 |
+
# Initialize evaluator
|
| 712 |
+
evaluator = GAIAEvaluator(
|
| 713 |
+
results_dir=args.results_dir,
|
| 714 |
+
validation_file=args.validation_file
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
# Handle comparison mode
|
| 718 |
+
if args.compare and args.compare_files and args.compare_labels:
|
| 719 |
+
comparison_data = evaluator.compare_runs(args.compare_files, args.compare_labels)
|
| 720 |
+
if comparison_data and args.output_dir:
|
| 721 |
+
evaluator.visualize_comparison(comparison_data, args.output_dir)
|
| 722 |
+
print(f"Comparison visualizations saved to {args.output_dir}")
|
| 723 |
+
else:
|
| 724 |
+
# Regular evaluation
|
| 725 |
+
if args.results_file:
|
| 726 |
+
results = evaluator.load_results(args.results_file)
|
| 727 |
+
else:
|
| 728 |
+
results = evaluator.load_results()
|
| 729 |
+
|
| 730 |
+
if results:
|
| 731 |
+
metrics = evaluator.evaluate(results)
|
| 732 |
+
print(f"Evaluation metrics: {metrics}")
|
| 733 |
+
|
| 734 |
+
if args.output_dir:
|
| 735 |
+
evaluator.visualize_performance(args.output_dir)
|
| 736 |
+
print(f"Performance visualizations saved to {args.output_dir}")
|
| 737 |
+
|
| 738 |
+
if args.report_file:
|
| 739 |
+
evaluator.generate_report(args.report_file)
|
| 740 |
+
print(f"Report saved to {args.report_file}")
|
app/improved_gaia_batch_test.py
ADDED
|
File without changes
|