Spaces:
Sleeping
Sleeping
Commit
·
7d29596
1
Parent(s):
dafc0b4
more polished interface
Browse files- app.py +9 -3
- demo_watermark.py +124 -55
- homoglyph_data/__init__.py +40 -0
- homoglyph_data/categories.json +0 -0
- homoglyph_data/confusables_sept2022.json +0 -0
- homoglyph_data/languages.json +34 -0
- homoglyphs.py +11 -14
- requirements.txt +0 -1
- watermark_processor.py +2 -2
app.py
CHANGED
|
@@ -19,9 +19,14 @@ args = Namespace()
|
|
| 19 |
|
| 20 |
arg_dict = {
|
| 21 |
'run_gradio': True,
|
| 22 |
-
'demo_public': False,
|
| 23 |
-
|
| 24 |
-
'model_name_or_path': 'facebook/opt-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
'prompt_max_length': None,
|
| 26 |
'max_new_tokens': 200,
|
| 27 |
'generation_seed': 123,
|
|
@@ -36,6 +41,7 @@ arg_dict = {
|
|
| 36 |
'ignore_repeated_bigrams': False,
|
| 37 |
'detection_z_threshold': 4.0,
|
| 38 |
'select_green_tokens': True,
|
|
|
|
| 39 |
'skip_model_load': False,
|
| 40 |
'seed_separately': True,
|
| 41 |
}
|
|
|
|
| 19 |
|
| 20 |
arg_dict = {
|
| 21 |
'run_gradio': True,
|
| 22 |
+
# 'demo_public': False,
|
| 23 |
+
'demo_public': True,
|
| 24 |
+
'model_name_or_path': 'facebook/opt-125m',
|
| 25 |
+
# 'model_name_or_path': 'facebook/opt-1.3b',
|
| 26 |
+
# 'model_name_or_path': 'facebook/opt-2.7b',
|
| 27 |
+
# 'model_name_or_path': 'facebook/opt-6.7b',
|
| 28 |
+
# 'model_name_or_path': 'facebook/opt-13b',
|
| 29 |
+
# 'model_name_or_path': 'facebook/opt-30b',
|
| 30 |
'prompt_max_length': None,
|
| 31 |
'max_new_tokens': 200,
|
| 32 |
'generation_seed': 123,
|
|
|
|
| 41 |
'ignore_repeated_bigrams': False,
|
| 42 |
'detection_z_threshold': 4.0,
|
| 43 |
'select_green_tokens': True,
|
| 44 |
+
# 'skip_model_load': True,
|
| 45 |
'skip_model_load': False,
|
| 46 |
'seed_separately': True,
|
| 47 |
}
|
demo_watermark.py
CHANGED
|
@@ -250,6 +250,41 @@ def generate(prompt, args, model=None, device=None, tokenizer=None):
|
|
| 250 |
args)
|
| 251 |
# decoded_output_with_watermark)
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
def detect(input_text, args, device=None, tokenizer=None):
|
| 254 |
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
|
| 255 |
gamma=args.gamma,
|
|
@@ -262,11 +297,13 @@ def detect(input_text, args, device=None, tokenizer=None):
|
|
| 262 |
select_green_tokens=args.select_green_tokens)
|
| 263 |
if len(input_text)-1 > watermark_detector.min_prefix_len:
|
| 264 |
score_dict = watermark_detector.detect(input_text)
|
| 265 |
-
|
| 266 |
-
|
| 267 |
else:
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
| 270 |
|
| 271 |
def run_gradio(args, model=None, device=None, tokenizer=None):
|
| 272 |
|
|
@@ -276,33 +313,41 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 276 |
with gr.Blocks() as demo:
|
| 277 |
|
| 278 |
# Top section, greeting and instructions
|
| 279 |
-
gr.Markdown("##
|
| 280 |
-
gr.
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
session_args = gr.State(value=args)
|
| 289 |
|
| 290 |
-
with gr.Tab("
|
| 291 |
|
| 292 |
with gr.Row():
|
| 293 |
-
prompt = gr.Textbox(label=f"Prompt", interactive=True)
|
| 294 |
with gr.Row():
|
| 295 |
generate_btn = gr.Button("Generate")
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Column(scale=2):
|
| 298 |
-
output_without_watermark = gr.Textbox(label="Output Without Watermark", interactive=False)
|
| 299 |
with gr.Column(scale=1):
|
| 300 |
-
without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
|
|
|
| 301 |
with gr.Row():
|
| 302 |
with gr.Column(scale=2):
|
| 303 |
-
output_with_watermark = gr.Textbox(label="Output With Watermark", interactive=False)
|
| 304 |
with gr.Column(scale=1):
|
| 305 |
-
with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
|
|
|
| 306 |
|
| 307 |
redecoded_input = gr.Textbox(visible=False)
|
| 308 |
truncation_warning = gr.Number(visible=False)
|
|
@@ -311,24 +356,16 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 311 |
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
|
| 312 |
else:
|
| 313 |
return orig_prompt, args
|
| 314 |
-
|
| 315 |
-
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
|
| 316 |
-
|
| 317 |
-
# Show truncated version of prompt if truncation occurred
|
| 318 |
-
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
| 319 |
-
|
| 320 |
-
# Call detection when the outputs of the generate function are updated.
|
| 321 |
-
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 322 |
-
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 323 |
|
| 324 |
with gr.Tab("Detector Only"):
|
| 325 |
with gr.Row():
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
| 329 |
with gr.Row():
|
| 330 |
-
|
| 331 |
-
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
|
| 332 |
|
| 333 |
# Parameter selection group
|
| 334 |
with gr.Accordion("Advanced Settings",open=False):
|
|
@@ -347,18 +384,23 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 347 |
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
|
| 348 |
|
| 349 |
with gr.Column(scale=1):
|
| 350 |
-
gr.Markdown(f"####
|
| 351 |
with gr.Row():
|
| 352 |
gamma = gr.Slider(label="gamma",minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
|
| 353 |
with gr.Row():
|
| 354 |
delta = gr.Slider(label="delta",minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
|
|
|
|
|
|
|
|
|
|
| 355 |
with gr.Row():
|
| 356 |
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
|
| 357 |
with gr.Row():
|
| 358 |
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
|
| 359 |
-
gr.
|
| 360 |
-
with gr.
|
| 361 |
-
|
|
|
|
|
|
|
| 362 |
with gr.Accordion("Legacy Settings",open=False):
|
| 363 |
with gr.Row():
|
| 364 |
with gr.Column(scale=1):
|
|
@@ -366,23 +408,31 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 366 |
with gr.Column(scale=1):
|
| 367 |
select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
|
| 368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
#
|
| 382 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
| 383 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
| 384 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
| 385 |
def update_delta(session_state, value): session_state.delta = float(value); return session_state
|
|
|
|
| 386 |
def update_decoding(session_state, value):
|
| 387 |
if value == "multinomial":
|
| 388 |
session_state.use_sampling = True
|
|
@@ -405,11 +455,11 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 405 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
| 406 |
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
|
| 407 |
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
|
| 408 |
-
|
| 409 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
| 410 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
| 411 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
| 412 |
-
|
| 413 |
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
| 414 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
| 415 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
|
@@ -417,17 +467,36 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 417 |
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
|
| 418 |
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
|
| 419 |
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
|
|
|
|
| 420 |
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
|
| 421 |
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
|
| 422 |
seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
|
| 423 |
select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
|
| 424 |
-
|
| 425 |
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 426 |
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
-
# When the parameters change, also fire detection, since some detection params dont change the model output.
|
| 429 |
-
current_parameters.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 430 |
-
current_parameters.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 431 |
|
| 432 |
demo.queue(concurrency_count=3)
|
| 433 |
|
|
|
|
| 250 |
args)
|
| 251 |
# decoded_output_with_watermark)
|
| 252 |
|
| 253 |
+
def format_names(s):
|
| 254 |
+
s=s.replace("num_tokens_scored","Tokens Counted (T)")
|
| 255 |
+
s=s.replace("num_green_tokens","# Tokens in Greenlist")
|
| 256 |
+
s=s.replace("green_fraction","Fraction of T in Greenlist")
|
| 257 |
+
s=s.replace("z_score","z-score")
|
| 258 |
+
s=s.replace("p_value","p value")
|
| 259 |
+
return s
|
| 260 |
+
# def str_format_scores(score_dict, detection_threshold):
|
| 261 |
+
# output_str = f"@ z-score threshold={detection_threshold}:\n\n"
|
| 262 |
+
# for k,v in score_dict.items():
|
| 263 |
+
# if k=='green_fraction':
|
| 264 |
+
# output_str+=f"{format_names(k)}={v:.1%}"
|
| 265 |
+
# elif k=='confidence':
|
| 266 |
+
# output_str+=f"{format_names(k)}={v:.3%}"
|
| 267 |
+
# elif isinstance(v, float):
|
| 268 |
+
# output_str+=f"{format_names(k)}={v:.3g}"
|
| 269 |
+
# else:
|
| 270 |
+
# output_str += v
|
| 271 |
+
# return output_str
|
| 272 |
+
def list_format_scores(score_dict, detection_threshold):
|
| 273 |
+
lst_2d = []
|
| 274 |
+
lst_2d.append(["z-score threshold", f"{detection_threshold}"])
|
| 275 |
+
for k,v in score_dict.items():
|
| 276 |
+
if k=='green_fraction':
|
| 277 |
+
lst_2d.append([format_names(k), f"{v:.1%}"])
|
| 278 |
+
elif k=='confidence':
|
| 279 |
+
lst_2d.append([format_names(k), f"{v:.3%}"])
|
| 280 |
+
elif isinstance(v, float):
|
| 281 |
+
lst_2d.append([format_names(k), f"{v:.3g}"])
|
| 282 |
+
elif isinstance(v, bool):
|
| 283 |
+
lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
|
| 284 |
+
else:
|
| 285 |
+
lst_2d.append([format_names(k), f"{v}"])
|
| 286 |
+
return lst_2d
|
| 287 |
+
|
| 288 |
def detect(input_text, args, device=None, tokenizer=None):
|
| 289 |
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
|
| 290 |
gamma=args.gamma,
|
|
|
|
| 297 |
select_green_tokens=args.select_green_tokens)
|
| 298 |
if len(input_text)-1 > watermark_detector.min_prefix_len:
|
| 299 |
score_dict = watermark_detector.detect(input_text)
|
| 300 |
+
# output = str_format_scores(score_dict, watermark_detector.z_threshold)
|
| 301 |
+
output = list_format_scores(score_dict, watermark_detector.z_threshold)
|
| 302 |
else:
|
| 303 |
+
# output = (f"Error: string not long enough to compute watermark presence.")
|
| 304 |
+
output = [["Error","string too short to compute metrics"]]
|
| 305 |
+
output += [["",""] for _ in range(6)]
|
| 306 |
+
return output, args
|
| 307 |
|
| 308 |
def run_gradio(args, model=None, device=None, tokenizer=None):
|
| 309 |
|
|
|
|
| 313 |
with gr.Blocks() as demo:
|
| 314 |
|
| 315 |
# Top section, greeting and instructions
|
| 316 |
+
gr.Markdown("## 💧 [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) 🔍")
|
| 317 |
+
gr.Markdown("[jwkirchenbauer/lm-watermarking](https://github.com/jwkirchenbauer/lm-watermarking)")
|
| 318 |
+
|
| 319 |
+
with gr.Accordion("A note on model capability",open=False):
|
| 320 |
+
gr.Markdown(
|
| 321 |
+
"""
|
| 322 |
+
The models that can be used in this demo are limited to those that are open source as well as fit on a single commodity GPU. In particular, there are few models above 10B parameters and way fewer trained using both Instruction finetuning or RLHF that are open source that we can use.
|
| 323 |
+
|
| 324 |
+
Therefore, the model, in both it's un-watermarked (normal) and watermarked state, is not generally able to respond well to the kinds of prompts that a 100B+ Instruction and RLHF tuned model such as ChatGPT, Claude, or Bard is.
|
| 325 |
+
|
| 326 |
+
We suggest you try prompts that give the model a few sentences and then allow it to 'continue' the prompt, as these weaker models are more capable in this simpler language modeling setting.
|
| 327 |
+
"""
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# Construct state for parameters, define updates and toggles
|
| 331 |
session_args = gr.State(value=args)
|
| 332 |
|
| 333 |
+
with gr.Tab("Generate and Detect"):
|
| 334 |
|
| 335 |
with gr.Row():
|
| 336 |
+
prompt = gr.Textbox(label=f"Prompt", interactive=True,lines=12,max_lines=12)
|
| 337 |
with gr.Row():
|
| 338 |
generate_btn = gr.Button("Generate")
|
| 339 |
with gr.Row():
|
| 340 |
with gr.Column(scale=2):
|
| 341 |
+
output_without_watermark = gr.Textbox(label="Output Without Watermark", interactive=False,lines=12,max_lines=12)
|
| 342 |
with gr.Column(scale=1):
|
| 343 |
+
# without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=12,max_lines=12)
|
| 344 |
+
without_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
|
| 345 |
with gr.Row():
|
| 346 |
with gr.Column(scale=2):
|
| 347 |
+
output_with_watermark = gr.Textbox(label="Output With Watermark", interactive=False,lines=12,max_lines=12)
|
| 348 |
with gr.Column(scale=1):
|
| 349 |
+
# with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=12,max_lines=12)
|
| 350 |
+
with_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"],interactive=False,row_count=7,col_count=2)
|
| 351 |
|
| 352 |
redecoded_input = gr.Textbox(visible=False)
|
| 353 |
truncation_warning = gr.Number(visible=False)
|
|
|
|
| 356 |
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
|
| 357 |
else:
|
| 358 |
return orig_prompt, args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
with gr.Tab("Detector Only"):
|
| 361 |
with gr.Row():
|
| 362 |
+
with gr.Column(scale=2):
|
| 363 |
+
detection_input = gr.Textbox(label="Text to Analyze", interactive=True,lines=12,max_lines=12)
|
| 364 |
+
with gr.Column(scale=1):
|
| 365 |
+
# detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=12,max_lines=12)
|
| 366 |
+
detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
|
| 367 |
with gr.Row():
|
| 368 |
+
detect_btn = gr.Button("Detect")
|
|
|
|
| 369 |
|
| 370 |
# Parameter selection group
|
| 371 |
with gr.Accordion("Advanced Settings",open=False):
|
|
|
|
| 384 |
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
|
| 385 |
|
| 386 |
with gr.Column(scale=1):
|
| 387 |
+
gr.Markdown(f"#### Watermark Parameters")
|
| 388 |
with gr.Row():
|
| 389 |
gamma = gr.Slider(label="gamma",minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
|
| 390 |
with gr.Row():
|
| 391 |
delta = gr.Slider(label="delta",minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
|
| 392 |
+
gr.Markdown(f"#### Detector Parameters")
|
| 393 |
+
with gr.Row():
|
| 394 |
+
detection_z_threshold = gr.Slider(label="z-score threshold",minimum=0.0, maximum=10.0, step=0.1, value=args.detection_z_threshold)
|
| 395 |
with gr.Row():
|
| 396 |
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
|
| 397 |
with gr.Row():
|
| 398 |
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
|
| 399 |
+
# with gr.Accordion("Actual submitted parameters:",open=False):
|
| 400 |
+
with gr.Row():
|
| 401 |
+
gr.Markdown(f"_Note: sliders don't always update perfectly. Clicking on the bar or using the number window to the right can help. Window below shows the current settings._")
|
| 402 |
+
with gr.Row():
|
| 403 |
+
current_parameters = gr.Textbox(label="Current Parameters", value=args)
|
| 404 |
with gr.Accordion("Legacy Settings",open=False):
|
| 405 |
with gr.Row():
|
| 406 |
with gr.Column(scale=1):
|
|
|
|
| 408 |
with gr.Column(scale=1):
|
| 409 |
select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
|
| 410 |
|
| 411 |
+
gr.HTML("""
|
| 412 |
+
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
| 413 |
+
<br/>
|
| 414 |
+
<a href="https://huggingface.co/spaces/tomg-group-umd/lm-watermarking?duplicate=true">
|
| 415 |
+
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 416 |
+
<p/>
|
| 417 |
+
""")
|
| 418 |
|
| 419 |
+
# Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag
|
| 420 |
+
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
|
| 421 |
+
# Show truncated version of prompt if truncation occurred
|
| 422 |
+
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
| 423 |
+
# Call detection when the outputs (of the generate function) are updated
|
| 424 |
+
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 425 |
+
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 426 |
+
# Register main detection tab click
|
| 427 |
+
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
|
| 428 |
+
|
| 429 |
+
# State management logic
|
| 430 |
+
# update callbacks that change the state dict
|
| 431 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
| 432 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
| 433 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
| 434 |
def update_delta(session_state, value): session_state.delta = float(value); return session_state
|
| 435 |
+
def update_detection_z_threshold(session_state, value): session_state.detection_z_threshold = float(value); return session_state
|
| 436 |
def update_decoding(session_state, value):
|
| 437 |
if value == "multinomial":
|
| 438 |
session_state.use_sampling = True
|
|
|
|
| 455 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
| 456 |
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
|
| 457 |
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
|
| 458 |
+
# registering callbacks for toggling the visibilty of certain parameters
|
| 459 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
| 460 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
| 461 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
| 462 |
+
# registering all state update callbacks
|
| 463 |
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
| 464 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
| 465 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
|
|
|
| 467 |
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
|
| 468 |
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
|
| 469 |
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
|
| 470 |
+
detection_z_threshold.change(update_detection_z_threshold,inputs=[session_args, detection_z_threshold], outputs=[session_args])
|
| 471 |
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
|
| 472 |
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
|
| 473 |
seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
|
| 474 |
select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
|
| 475 |
+
# register additional callback on button clicks that updates the shown parameters window
|
| 476 |
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 477 |
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 478 |
+
# When the parameters change, display the update and fire detection, since some detection params dont change the model output.
|
| 479 |
+
gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 480 |
+
gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 481 |
+
gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 482 |
+
gamma.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_input,session_args])
|
| 483 |
+
detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 484 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 485 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 486 |
+
detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_input,session_args])
|
| 487 |
+
ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 488 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 489 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 490 |
+
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_input,session_args])
|
| 491 |
+
normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 492 |
+
normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 493 |
+
normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 494 |
+
normalizers.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_input,session_args])
|
| 495 |
+
select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
| 496 |
+
select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
| 497 |
+
select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
| 498 |
+
select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_input,session_args])
|
| 499 |
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
demo.queue(concurrency_count=3)
|
| 502 |
|
homoglyph_data/__init__.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is data for homoglyph finding
|
| 2 |
+
|
| 3 |
+
"""Original package info:
|
| 4 |
+
|
| 5 |
+
Homoglyphs
|
| 6 |
+
* Get similar letters
|
| 7 |
+
* Convert string to ASCII letters
|
| 8 |
+
* Detect possible letter languages
|
| 9 |
+
* Detect letter UTF-8 group.
|
| 10 |
+
|
| 11 |
+
# main package info
|
| 12 |
+
__title__ = 'Homoglyphs'
|
| 13 |
+
__version__ = '2.0.4'
|
| 14 |
+
__author__ = 'Gram Orsinium'
|
| 15 |
+
__license__ = 'MIT'
|
| 16 |
+
|
| 17 |
+
# License:
|
| 18 |
+
|
| 19 |
+
MIT License 2019 orsinium <[email protected]>
|
| 20 |
+
|
| 21 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 22 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 23 |
+
in the Software without restriction, including without limitation the rights
|
| 24 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 25 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 26 |
+
furnished to do so, subject to the following conditions:
|
| 27 |
+
|
| 28 |
+
The above copyright notice and this permission notice (including the next
|
| 29 |
+
paragraph) shall be included in all copies or substantial portions of the
|
| 30 |
+
Software.
|
| 31 |
+
|
| 32 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 33 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 34 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 35 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 36 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 37 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 38 |
+
SOFTWARE.
|
| 39 |
+
|
| 40 |
+
"""
|
homoglyph_data/categories.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
homoglyph_data/confusables_sept2022.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
homoglyph_data/languages.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ar": "ءآأؤإئابةتثجحخدذرزسشصضطظعغػؼؽؾؿـفقكلمنهوىيًٌٍَُِّ",
|
| 3 |
+
"be": "ʼЁІЎАБВГДЕЖЗЙКЛМНОПРСТУФХЦЧШЫЬЭЮЯабвгдежзйклмнопрстуфхцчшыьэюяёіў",
|
| 4 |
+
"bg": "АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЬЮЯабвгдежзийклмнопрстуфхцчшщъьюя",
|
| 5 |
+
"ca": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÀÈÉÍÏÒÓÚÜÇàèéíïòóúüç·",
|
| 6 |
+
"cz": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÁÉÍÓÚÝáéíóúýČčĎďĚěŇňŘřŠšŤťŮůŽž",
|
| 7 |
+
"da": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÅÆØåæø",
|
| 8 |
+
"de": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÄÖÜßäöü",
|
| 9 |
+
"el": "ΪΫΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩΐΰϊϋάέήίαβγδεζηθικλμνξοπρςστυφχψωόύώ",
|
| 10 |
+
"en": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
|
| 11 |
+
"eo": "ABCDEFGHIJKLMNOPRSTUVZabcdefghijklmnoprstuvzĈĉĜĝĤĥĴĵŜŝŬŭ",
|
| 12 |
+
"es": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÁÉÍÑÓÚÜáéíñóúü",
|
| 13 |
+
"et": "ABDEGHIJKLMNOPRSTUVabdeghijklmnoprstuvÄÕÖÜäõöü",
|
| 14 |
+
"fi": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÄÅÖäåöŠšŽž",
|
| 15 |
+
"fr": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÀÂÇÈÉÊÎÏÙÛàâçèéêîïùûŒœ",
|
| 16 |
+
"he": "אבגדהוזחטיךכלםמןנסעףפץצקרשתװױײ",
|
| 17 |
+
"hr": "ABCDEFGHIJKLMNOPRSTUVZabcdefghijklmnoprstuvzĆćČčĐ𩹮ž",
|
| 18 |
+
"hu": "ABCDEFGHIJKLMNOPRSTUVZabcdefghijklmnoprstuvzÁÉÍÓÖÚÜáéíóöúüŐőŰű",
|
| 19 |
+
"it": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÀÈÉÌÒÓÙàèéìòóù",
|
| 20 |
+
"lt": "ABCDEFGHIJKLMNOPRSTUVYZabcdefghijklmnoprstuvyzĄąČčĖėĘęĮįŠšŪūŲųŽž",
|
| 21 |
+
"lv": "ABCDEFGHIJKLMNOPRSTUVZabcdefghijklmnoprstuvzĀāČčĒēĢģĪīĶķĻļŅņŠšŪūŽž",
|
| 22 |
+
"mk": "ЃЅЈЉЊЌЏАБВГДЕЖЗИКЛМНОПРСТУФХЦЧШабвгдежзиклмнопрстуфхцчшѓѕјљњќџ",
|
| 23 |
+
"nl": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
|
| 24 |
+
"pl": "ABCDEFGHIJKLMNOPRSTUWYZabcdefghijklmnoprstuwyzÓóĄąĆćĘꣳŃńŚśŹźŻż",
|
| 25 |
+
"pt": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÀÁÂÃÇÉÊÍÓÔÕÚàáâãçéêíóôõú",
|
| 26 |
+
"ro": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÂÎâîĂăȘșȚț",
|
| 27 |
+
"ru": "ЁАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюяё",
|
| 28 |
+
"sk": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzÁÄÉÍÓÔÚÝáäéíóôúýČčĎďĹ弾ŇňŔ੹ŤťŽž",
|
| 29 |
+
"sl": "ABCDEFGHIJKLMNOPRSTUVZabcdefghijklmnoprstuvzČčŠšŽž",
|
| 30 |
+
"sr": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzЂЈЉЊЋЏАБВГДЕЖЗИКЛМНОПРСТУФХЦЧШабвгдежзиклмнопрстуфхцчшђјљњћџ",
|
| 31 |
+
"th": "กขฃคฅฆงจฉชซฌญฎฏฐฑฒณดตถทธนบปผฝพฟภมยรฤลฦวศษสหฬอฮฯะัาำิีึืฺุู฿เแโใไๅๆ็่้๊๋์ํ๎๏๐๑๒๓๔๕๖๗๘๙๚๛",
|
| 32 |
+
"tr": "ABCDEFGHIJKLMNOPRSTUVYZabcdefghijklmnoprstuvyzÂÇÎÖÛÜâçîöûüĞğİıŞş",
|
| 33 |
+
"vi": "ABCDEGHIKLMNOPQRSTUVXYabcdeghiklmnopqrstuvxyÂÊÔâêôĂăĐđƠơƯư"
|
| 34 |
+
}
|
homoglyphs.py
CHANGED
|
@@ -9,10 +9,6 @@ from itertools import product
|
|
| 9 |
import os
|
| 10 |
import unicodedata
|
| 11 |
|
| 12 |
-
import homoglyphs_fork as hg
|
| 13 |
-
|
| 14 |
-
CURRENT_DIR = hg.core.CURRENT_DIR
|
| 15 |
-
|
| 16 |
# Actions if char not in alphabet
|
| 17 |
STRATEGY_LOAD = 1 # load category for this char
|
| 18 |
STRATEGY_IGNORE = 2 # add char to result
|
|
@@ -21,13 +17,17 @@ STRATEGY_REMOVE = 3 # remove char from result
|
|
| 21 |
ASCII_RANGE = range(128)
|
| 22 |
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
class Categories:
|
| 25 |
"""
|
| 26 |
Work with aliases from ISO 15924.
|
| 27 |
https://en.wikipedia.org/wiki/ISO_15924#List_of_codes
|
| 28 |
"""
|
| 29 |
|
| 30 |
-
fpath = os.path.join(
|
| 31 |
|
| 32 |
@classmethod
|
| 33 |
def _get_ranges(cls, categories):
|
|
@@ -70,8 +70,9 @@ class Categories:
|
|
| 70 |
# try detect category by unicodedata
|
| 71 |
try:
|
| 72 |
category = unicodedata.name(char).split()[0]
|
| 73 |
-
except TypeError:
|
| 74 |
# In Python2 unicodedata.name raise error for non-unicode chars
|
|
|
|
| 75 |
pass
|
| 76 |
else:
|
| 77 |
if category in data["aliases"]:
|
|
@@ -91,7 +92,7 @@ class Categories:
|
|
| 91 |
|
| 92 |
|
| 93 |
class Languages:
|
| 94 |
-
fpath = os.path.join(
|
| 95 |
|
| 96 |
@classmethod
|
| 97 |
def get_alphabet(cls, languages):
|
|
@@ -167,8 +168,7 @@ class Homoglyphs:
|
|
| 167 |
@staticmethod
|
| 168 |
def get_table(alphabet):
|
| 169 |
table = defaultdict(set)
|
| 170 |
-
|
| 171 |
-
with open(os.path.join("confusables_sept2022.json")) as f:
|
| 172 |
data = json.load(f)
|
| 173 |
for char in alphabet:
|
| 174 |
if char in data:
|
|
@@ -180,8 +180,7 @@ class Homoglyphs:
|
|
| 180 |
@staticmethod
|
| 181 |
def get_restricted_table(source_alphabet, target_alphabet):
|
| 182 |
table = defaultdict(set)
|
| 183 |
-
|
| 184 |
-
with open(os.path.join("confusables_sept2022.json")) as f:
|
| 185 |
data = json.load(f)
|
| 186 |
for char in source_alphabet:
|
| 187 |
if char in data:
|
|
@@ -244,9 +243,7 @@ class Homoglyphs:
|
|
| 244 |
alt_chars = self._get_char_variants(char)
|
| 245 |
|
| 246 |
if ascii:
|
| 247 |
-
alt_chars = [
|
| 248 |
-
char for char in alt_chars if ord(char) in self.ascii_range
|
| 249 |
-
]
|
| 250 |
if not alt_chars and self.ascii_strategy == STRATEGY_IGNORE:
|
| 251 |
return
|
| 252 |
|
|
|
|
| 9 |
import os
|
| 10 |
import unicodedata
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Actions if char not in alphabet
|
| 13 |
STRATEGY_LOAD = 1 # load category for this char
|
| 14 |
STRATEGY_IGNORE = 2 # add char to result
|
|
|
|
| 17 |
ASCII_RANGE = range(128)
|
| 18 |
|
| 19 |
|
| 20 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 21 |
+
DATA_LOCATION = os.path.join(CURRENT_DIR, "homoglyph_data")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
class Categories:
|
| 25 |
"""
|
| 26 |
Work with aliases from ISO 15924.
|
| 27 |
https://en.wikipedia.org/wiki/ISO_15924#List_of_codes
|
| 28 |
"""
|
| 29 |
|
| 30 |
+
fpath = os.path.join(DATA_LOCATION, "categories.json")
|
| 31 |
|
| 32 |
@classmethod
|
| 33 |
def _get_ranges(cls, categories):
|
|
|
|
| 70 |
# try detect category by unicodedata
|
| 71 |
try:
|
| 72 |
category = unicodedata.name(char).split()[0]
|
| 73 |
+
except (TypeError, ValueError):
|
| 74 |
# In Python2 unicodedata.name raise error for non-unicode chars
|
| 75 |
+
# Python3 raise ValueError for non-unicode characters
|
| 76 |
pass
|
| 77 |
else:
|
| 78 |
if category in data["aliases"]:
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
class Languages:
|
| 95 |
+
fpath = os.path.join(DATA_LOCATION, "languages.json")
|
| 96 |
|
| 97 |
@classmethod
|
| 98 |
def get_alphabet(cls, languages):
|
|
|
|
| 168 |
@staticmethod
|
| 169 |
def get_table(alphabet):
|
| 170 |
table = defaultdict(set)
|
| 171 |
+
with open(os.path.join(DATA_LOCATION, "confusables_sept2022.json")) as f:
|
|
|
|
| 172 |
data = json.load(f)
|
| 173 |
for char in alphabet:
|
| 174 |
if char in data:
|
|
|
|
| 180 |
@staticmethod
|
| 181 |
def get_restricted_table(source_alphabet, target_alphabet):
|
| 182 |
table = defaultdict(set)
|
| 183 |
+
with open(os.path.join(DATA_LOCATION, "confusables_sept2022.json")) as f:
|
|
|
|
| 184 |
data = json.load(f)
|
| 185 |
for char in source_alphabet:
|
| 186 |
if char in data:
|
|
|
|
| 243 |
alt_chars = self._get_char_variants(char)
|
| 244 |
|
| 245 |
if ascii:
|
| 246 |
+
alt_chars = [char for char in alt_chars if ord(char) in self.ascii_range]
|
|
|
|
|
|
|
| 247 |
if not alt_chars and self.ascii_strategy == STRATEGY_IGNORE:
|
| 248 |
return
|
| 249 |
|
requirements.txt
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
homoglyphs_fork
|
| 2 |
nltk
|
| 3 |
scipy
|
| 4 |
torch
|
|
|
|
|
|
|
| 1 |
nltk
|
| 2 |
scipy
|
| 3 |
torch
|
watermark_processor.py
CHANGED
|
@@ -216,6 +216,8 @@ class WatermarkDetector(WatermarkBase):
|
|
| 216 |
score_dict.update(dict(num_tokens_scored=num_tokens_scored))
|
| 217 |
if return_num_green_tokens:
|
| 218 |
score_dict.update(dict(num_green_tokens=green_token_count))
|
|
|
|
|
|
|
| 219 |
if return_z_score:
|
| 220 |
score_dict.update(dict(z_score=self._compute_z_score(green_token_count, num_tokens_scored)))
|
| 221 |
if return_p_value:
|
|
@@ -223,8 +225,6 @@ class WatermarkDetector(WatermarkBase):
|
|
| 223 |
if z_score is None:
|
| 224 |
z_score = self._compute_z_score(green_token_count, num_tokens_scored)
|
| 225 |
score_dict.update(dict(p_value=self._compute_p_value(z_score)))
|
| 226 |
-
if return_green_fraction:
|
| 227 |
-
score_dict.update(dict(green_fraction=(green_token_count / num_tokens_scored)))
|
| 228 |
if return_green_token_mask:
|
| 229 |
score_dict.update(dict(green_token_mask=green_token_mask))
|
| 230 |
|
|
|
|
| 216 |
score_dict.update(dict(num_tokens_scored=num_tokens_scored))
|
| 217 |
if return_num_green_tokens:
|
| 218 |
score_dict.update(dict(num_green_tokens=green_token_count))
|
| 219 |
+
if return_green_fraction:
|
| 220 |
+
score_dict.update(dict(green_fraction=(green_token_count / num_tokens_scored)))
|
| 221 |
if return_z_score:
|
| 222 |
score_dict.update(dict(z_score=self._compute_z_score(green_token_count, num_tokens_scored)))
|
| 223 |
if return_p_value:
|
|
|
|
| 225 |
if z_score is None:
|
| 226 |
z_score = self._compute_z_score(green_token_count, num_tokens_scored)
|
| 227 |
score_dict.update(dict(p_value=self._compute_p_value(z_score)))
|
|
|
|
|
|
|
| 228 |
if return_green_token_mask:
|
| 229 |
score_dict.update(dict(green_token_mask=green_token_mask))
|
| 230 |
|