tidalove commited on
Commit
a62af7c
·
verified ·
1 Parent(s): 59166c1

Create test_api.py

Browse files
Files changed (1) hide show
  1. test_api.py +95 -0
test_api.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ import torch
4
+ import time
5
+ import numpy as np
6
+ from pathlib import Path
7
+ from AdaIN import AdaINNet
8
+ from PIL import Image
9
+ from torchvision.utils import save_image
10
+ from torchvision.transforms import ToPILImage
11
+ from utils import adaptive_instance_normalization, grid_image, transform,linear_histogram_matching, Range
12
+ from glob import glob
13
+
14
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
15
+
16
+
17
+ def style_transfer(content_tensor, style_tensor, encoder, decoder, alpha=1.0):
18
+ """
19
+ Given content image and style image, generate feature maps with encoder, apply
20
+ neural style transfer with adaptive instance normalization, generate output image
21
+ with decoder
22
+
23
+ Args:
24
+ content_tensor (torch.FloatTensor): Content image
25
+ style_tensor (torch.FloatTensor): Style Image
26
+ encoder: Encoder (vgg19) network
27
+ decoder: Decoder network
28
+ alpha (float, default=1.0): Weight of style image feature
29
+
30
+ Return:
31
+ output_tensor (torch.FloatTensor): Style Transfer output image
32
+ """
33
+
34
+ content_enc = encoder(content_tensor)
35
+ style_enc = encoder(style_tensor)
36
+
37
+ transfer_enc = adaptive_instance_normalization(content_enc, style_enc)
38
+
39
+ mix_enc = alpha * transfer_enc + (1-alpha) * content_enc
40
+ return decoder(mix_enc)
41
+
42
+ def run_adain(content_dir, style_dir, vgg_pth='vgg_normalized.pth', decoder_pth='decoder.pth', alpha=1.0):
43
+ content_pths = [Path(f) for f in glob(content_dir+'/*')]
44
+ style_pths = [Path(f) for f in glob(style_dir+'/*')]
45
+
46
+ assert len(content_pths) > 0, 'Failed to load content image'
47
+ assert len(style_pths) > 0, 'Failed to load style image'
48
+
49
+ # Prepare directory for saving results
50
+ out_dir = tempfile.mkdtemp()
51
+ os.makedirs(out_dir, exist_ok=True)
52
+
53
+ # Load AdaIN model
54
+ vgg = torch.load(vgg_pth)
55
+ model = AdaINNet(vgg).to(device)
56
+ model.decoder.load_state_dict(torch.load(decoder_pth))
57
+ model.eval()
58
+
59
+ # Prepare image transform
60
+ t = transform(512)
61
+
62
+ # Timer
63
+ times = []
64
+
65
+ for content_pth in content_pths:
66
+ content_img = Image.open(content_pth)
67
+ content_tensor = t(content_img).unsqueeze(0).to(device)
68
+
69
+ for style_pth in style_pths:
70
+
71
+ style_tensor = t(Image.open(style_pth)).unsqueeze(0).to(device)
72
+
73
+ # Start time
74
+ tic = time.perf_counter()
75
+
76
+ # Execute style transfer
77
+ with torch.no_grad():
78
+ out_tensor = style_transfer(content_tensor, style_tensor, model.encoder, model.decoder, alpha).cpu()
79
+
80
+ # End time
81
+ toc = time.perf_counter()
82
+ print("Content: " + content_pth.stem + ". Style: " \
83
+ + style_pth.stem + '. Alpha: ' + str(alpha) + '. Style Transfer time: %.4f seconds' % (toc-tic))
84
+ times.append(toc-tic)
85
+
86
+ # Save image
87
+ out_pth = out_dir + content_pth.stem + '_style_' + style_pth.stem + '_alpha' + str(alpha)
88
+ out_pth += content_pth.suffix
89
+ save_image(out_tensor, out_pth)
90
+
91
+ # Remove runtime of first iteration because it is flawed for some unknown reason
92
+ if len(times) > 1:
93
+ times.pop(0)
94
+ avg = sum(times)/len(times)
95
+ print("Average style transfer time: %.4f seconds" % (avg))