Spaces:
Runtime error
Runtime error
| # This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright: | |
| # | |
| # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| import json | |
| import math | |
| import jsonlines | |
| import pathlib | |
| from multiprocessing import Pool | |
| from typing import Dict, Optional, Sequence | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import Dataset | |
| import transformers | |
| from transformers import Trainer | |
| from transformers.trainer_pt_utils import LabelSmoother | |
| from fastchat.conversation import SeparatorStyle | |
| from fastchat.model.model_adapter import get_conversation_template | |
| IGNORE_TOKEN_ID = LabelSmoother.ignore_index | |
| class ModelArguments: | |
| model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
| class DataArguments: | |
| data_path: str = field( | |
| default=None, metadata={"help": "Path to the training data."} | |
| ) | |
| lazy_preprocess: bool = False | |
| class TrainingArguments(transformers.TrainingArguments): | |
| cache_dir: Optional[str] = field(default=None) | |
| optim: str = field(default="adamw_torch") | |
| model_max_length: int = field( | |
| default=512, | |
| metadata={ | |
| "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
| }, | |
| ) | |
| local_rank = None | |
| def rank0_print(*args): | |
| if local_rank == 0: | |
| print(*args) | |
| def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
| """Collects the state dict and dump to disk.""" | |
| state_dict = trainer.model.state_dict() | |
| if trainer.args.should_save: | |
| cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
| del state_dict | |
| trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
| def apply_prompt_template(sources, systems=None): | |
| conv = get_conversation_template("vicuna") | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| if systems and systems[i]: | |
| conv.set_system_message(systems[i]) | |
| prompt = conv.get_prompt() | |
| conversations.append(prompt) | |
| return conversations, conv | |
| def tokenize_conversations(conversations, tokenizer): | |
| input_ids = tokenizer( | |
| conversations, | |
| return_tensors="pt", | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ).input_ids | |
| targets = input_ids.clone() | |
| return input_ids, targets | |
| def mask_targets(conversations, targets, tokenizer, conv): | |
| sep = conv.sep + conv.roles[1] + ": " | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| turns = conversation.split(conv.sep2) | |
| cur_len = 0 | |
| target[:cur_len] = IGNORE_TOKEN_ID | |
| for i, turn in enumerate(turns): | |
| if turn == "": | |
| break | |
| turn_len = len(tokenizer(turn + conv.sep2).input_ids) | |
| parts = turn.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| instruction_len = len(tokenizer(parts[0]).input_ids) - 1 | |
| target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | |
| cur_len += turn_len | |
| target[cur_len:] = IGNORE_TOKEN_ID | |
| if False: # Inspect and check the correctness of masking | |
| z = target.clone() | |
| z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
| rank0_print(tokenizer.decode(z)) | |
| if cur_len < tokenizer.model_max_length: | |
| if cur_len != total_len: | |
| target[:] = IGNORE_TOKEN_ID | |
| rank0_print( | |
| f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
| f" (ignored)" | |
| ) | |
| return targets | |
| def preprocess(sources, tokenizer: transformers.PreTrainedTokenizer, **kwargs) -> Dict: | |
| systems = None if not kwargs else kwargs.get("systems", None) | |
| # If the data volume is small, process it directly in the main thread | |
| if len(sources) <= 1000: | |
| conversations, conv = apply_prompt_template(sources, systems) | |
| input_ids, targets = tokenize_conversations(conversations, tokenizer) | |
| targets = mask_targets(conversations, targets, tokenizer, conv) | |
| else: # If the data volume is large, use multithreading for processing | |
| with Pool() as p: | |
| conversations, conv = p.apply_async( | |
| apply_prompt_template, (sources, tokenizer, systems) | |
| ).get() | |
| input_ids, targets = p.apply_async( | |
| tokenize_conversations, (conversations, tokenizer) | |
| ).get() | |
| targets = p.apply_async( | |
| mask_targets, (conversations, targets, tokenizer, conv) | |
| ).get() | |
| p.close() | |
| p.join() | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| attention_mask=input_ids.ne(tokenizer.pad_token_id), | |
| ) | |
| class SupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): | |
| super(SupervisedDataset, self).__init__() | |
| rank0_print("Formatting inputs...") | |
| systems = [example.get("system", "") for example in raw_data] | |
| sources = [example["conversations"] for example in raw_data] | |
| data_dict = preprocess(sources, tokenizer, systems=systems) | |
| self.input_ids = data_dict["input_ids"] | |
| self.labels = data_dict["labels"] | |
| self.attention_mask = data_dict["attention_mask"] | |
| def __len__(self): | |
| return len(self.input_ids) | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| return dict( | |
| input_ids=self.input_ids[i], | |
| labels=self.labels[i], | |
| attention_mask=self.attention_mask[i], | |
| ) | |
| class LazySupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): | |
| super(LazySupervisedDataset, self).__init__() | |
| self.tokenizer = tokenizer | |
| rank0_print("Formatting inputs...Skip in lazy mode") | |
| self.raw_data = raw_data | |
| self.cached_data_dict = {} | |
| def __len__(self): | |
| return len(self.raw_data) | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| if i in self.cached_data_dict: | |
| return self.cached_data_dict[i] | |
| ret = preprocess( | |
| [self.raw_data[i]["conversations"]], | |
| self.tokenizer, | |
| systems=[self.raw_data[i].get("system", "")], | |
| ) | |
| ret = dict( | |
| input_ids=ret["input_ids"][0], | |
| labels=ret["labels"][0], | |
| attention_mask=ret["attention_mask"][0], | |
| ) | |
| self.cached_data_dict[i] = ret | |
| return ret | |
| def make_supervised_data_module( | |
| tokenizer: transformers.PreTrainedTokenizer, data_args, train_ratio=0.98 | |
| ) -> Dict: | |
| """Make dataset and collator for supervised fine-tuning.""" | |
| train_ratio = min(train_ratio, 1.0) | |
| dataset_cls = ( | |
| LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset | |
| ) | |
| rank0_print("Loading data...") | |
| data_path = data_args.data_path | |
| if data_path.endswith(".json"): | |
| raw_data = json.load(open(data_path, "r")) | |
| elif data_path.endswith(".jsonl"): | |
| with jsonlines.open(data_path, mode="r") as reader: | |
| raw_data = [item for item in reader] | |
| # Split train/test | |
| np.random.seed(0) | |
| perm = np.random.permutation(len(raw_data)) | |
| split = int(len(perm) * train_ratio) | |
| train_indices = perm[:split] | |
| if train_ratio < 1: | |
| eval_indices = perm[split:] | |
| else: | |
| # if train_ratio==1, we use 5% of data as eval data, make sure trainer will not throw error when eval data is empty | |
| eval_indices = perm[-int(len(perm) * 0.05) :] | |
| train_raw_data = [raw_data[i] for i in train_indices] | |
| eval_raw_data = [raw_data[i] for i in eval_indices] | |
| rank0_print(f"#train {len(train_raw_data)}, #eval {len(eval_raw_data)}") | |
| train_dataset = dataset_cls(train_raw_data, tokenizer=tokenizer) | |
| eval_dataset = dataset_cls(eval_raw_data, tokenizer=tokenizer) | |
| return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) | |
| def train(): | |
| global local_rank | |
| parser = transformers.HfArgumentParser( | |
| (ModelArguments, DataArguments, TrainingArguments) | |
| ) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| local_rank = training_args.local_rank | |
| config = transformers.AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, | |
| trust_remote_code=True, | |
| cache_dir=training_args.cache_dir, | |
| ) | |
| # Set RoPE scaling factor | |
| orig_ctx_len = getattr(config, "max_position_embeddings", None) | |
| if orig_ctx_len and training_args.model_max_length > orig_ctx_len: | |
| scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len)) | |
| config.rope_scaling = {"type": "linear", "factor": scaling_factor} | |
| config.use_cache = False | |
| model = transformers.AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| trust_remote_code=True, | |
| cache_dir=training_args.cache_dir, | |
| ) | |
| # Tie the weights | |
| model.tie_weights() | |
| tokenizer = transformers.AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| trust_remote_code=True, | |
| cache_dir=training_args.cache_dir, | |
| model_max_length=training_args.model_max_length, | |
| padding_side="right", | |
| use_fast=False, | |
| ) | |
| # NOTE: if the token_id exceed the vocab_size will cause failing in training process! we need add special config and resize the embedding size! | |
| tokenizer.pad_token = tokenizer.unk_token | |
| print(f"tokens len: {len(tokenizer)}") | |
| model.resize_token_embeddings(len(tokenizer)) | |
| data_module = make_supervised_data_module( | |
| tokenizer=tokenizer, train_ratio=0.98, data_args=data_args | |
| ) | |
| trainer = Trainer( | |
| model=model, tokenizer=tokenizer, args=training_args, **data_module | |
| ) | |
| if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
| trainer.train(resume_from_checkpoint=True) | |
| else: | |
| trainer.train() | |
| trainer.save_state() | |
| safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) | |
| if __name__ == "__main__": | |
| train() | |