Spaces:
Runtime error
Runtime error
| # This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright: | |
| # | |
| # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| import json | |
| import math | |
| import pathlib | |
| from typing import Dict, Optional, Sequence | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import Dataset | |
| import transformers | |
| from transformers import Trainer | |
| from transformers.trainer_pt_utils import LabelSmoother | |
| from fastchat.conversation import SeparatorStyle | |
| from fastchat.model.model_adapter import get_conversation_template | |
| IGNORE_TOKEN_ID = LabelSmoother.ignore_index | |
| class ModelArguments: | |
| model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "Whether or not to allow for custom models defined on the Hub in their own modeling files" | |
| }, | |
| ) | |
| padding_side: str = field( | |
| default="right", metadata={"help": "The padding side in tokenizer"} | |
| ) | |
| class DataArguments: | |
| data_path: str = field( | |
| default=None, metadata={"help": "Path to the training data."} | |
| ) | |
| eval_data_path: str = field( | |
| default=None, metadata={"help": "Path to the evaluation data."} | |
| ) | |
| lazy_preprocess: bool = False | |
| class TrainingArguments(transformers.TrainingArguments): | |
| cache_dir: Optional[str] = field(default=None) | |
| optim: str = field(default="adamw_torch") | |
| model_max_length: int = field( | |
| default=512, | |
| metadata={ | |
| "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
| }, | |
| ) | |
| local_rank = None | |
| def rank0_print(*args): | |
| if local_rank == 0: | |
| print(*args) | |
| def trainer_save_model_safe(trainer: transformers.Trainer): | |
| from torch.distributed.fsdp import FullyShardedDataParallel as FSDP | |
| from torch.distributed.fsdp import StateDictType, FullStateDictConfig | |
| save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) | |
| with FSDP.state_dict_type( | |
| trainer.model, StateDictType.FULL_STATE_DICT, save_policy | |
| ): | |
| trainer.save_model() | |
| def preprocess( | |
| sources, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| ) -> Dict: | |
| conv = get_conversation_template("vicuna") | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| # Apply prompt templates | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| # Tokenize conversations | |
| input_ids = tokenizer( | |
| conversations, | |
| return_tensors="pt", | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ).input_ids | |
| targets = input_ids.clone() | |
| assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO | |
| # Mask targets. Only compute loss on the assistant outputs. | |
| sep = conv.sep + conv.roles[1] + ": " | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| turns = conversation.split(conv.sep2) | |
| cur_len = 1 | |
| target[:cur_len] = IGNORE_TOKEN_ID | |
| for i, turn in enumerate(turns): | |
| if turn == "": | |
| break | |
| turn_len = len(tokenizer(turn).input_ids) | |
| parts = turn.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| # "-2" is hardcoded for the Llama tokenizer to make the offset correct. | |
| instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
| if i != 0 and not tokenizer.legacy: | |
| # The legacy and non-legacy modes handle special tokens differently | |
| instruction_len -= 1 | |
| # Ignore the user instructions | |
| target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID | |
| cur_len += turn_len | |
| if i != 0 and not tokenizer.legacy: | |
| # The legacy and non-legacy modes handle special tokens differently | |
| cur_len -= 1 | |
| target[cur_len:] = IGNORE_TOKEN_ID | |
| if False: # Inspect and check the correctness of masking | |
| z = target.clone() | |
| z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
| rank0_print(tokenizer.decode(z)) | |
| exit() | |
| if cur_len < tokenizer.model_max_length: | |
| if cur_len != total_len: | |
| target[:] = IGNORE_TOKEN_ID | |
| rank0_print( | |
| f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
| f" #turn = {len(turns) - 1}. (ignored)" | |
| ) | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| attention_mask=input_ids.ne(tokenizer.pad_token_id), | |
| ) | |
| class SupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): | |
| super(SupervisedDataset, self).__init__() | |
| rank0_print("Formatting inputs...") | |
| sources = [example["conversations"] for example in raw_data] | |
| data_dict = preprocess(sources, tokenizer) | |
| self.input_ids = data_dict["input_ids"] | |
| self.labels = data_dict["labels"] | |
| self.attention_mask = data_dict["attention_mask"] | |
| def __len__(self): | |
| return len(self.input_ids) | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| return dict( | |
| input_ids=self.input_ids[i], | |
| labels=self.labels[i], | |
| attention_mask=self.attention_mask[i], | |
| ) | |
| class LazySupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer): | |
| super(LazySupervisedDataset, self).__init__() | |
| self.tokenizer = tokenizer | |
| rank0_print("Formatting inputs...Skip in lazy mode") | |
| self.tokenizer = tokenizer | |
| self.raw_data = raw_data | |
| self.cached_data_dict = {} | |
| def __len__(self): | |
| return len(self.raw_data) | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| if i in self.cached_data_dict: | |
| return self.cached_data_dict[i] | |
| ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer) | |
| ret = dict( | |
| input_ids=ret["input_ids"][0], | |
| labels=ret["labels"][0], | |
| attention_mask=ret["attention_mask"][0], | |
| ) | |
| self.cached_data_dict[i] = ret | |
| return ret | |
| def make_supervised_data_module( | |
| tokenizer: transformers.PreTrainedTokenizer, data_args | |
| ) -> Dict: | |
| """Make dataset and collator for supervised fine-tuning.""" | |
| dataset_cls = ( | |
| LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset | |
| ) | |
| rank0_print("Loading data...") | |
| train_json = json.load(open(data_args.data_path, "r")) | |
| train_dataset = dataset_cls(train_json, tokenizer=tokenizer) | |
| if data_args.eval_data_path: | |
| eval_json = json.load(open(data_args.eval_data_path, "r")) | |
| eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer) | |
| else: | |
| eval_dataset = None | |
| return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) | |
| def train(): | |
| global local_rank | |
| parser = transformers.HfArgumentParser( | |
| (ModelArguments, DataArguments, TrainingArguments) | |
| ) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| local_rank = training_args.local_rank | |
| # Set RoPE scaling factor | |
| config = transformers.AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| orig_ctx_len = getattr(config, "max_position_embeddings", None) | |
| if orig_ctx_len and training_args.model_max_length > orig_ctx_len: | |
| scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len)) | |
| config.rope_scaling = {"type": "linear", "factor": scaling_factor} | |
| config.use_cache = False | |
| # Load model and tokenizer | |
| model = transformers.AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| cache_dir=training_args.cache_dir, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = transformers.AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=training_args.cache_dir, | |
| model_max_length=training_args.model_max_length, | |
| padding_side=model_args.padding_side, | |
| use_fast=False, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| if tokenizer.pad_token != tokenizer.unk_token: | |
| tokenizer.pad_token = tokenizer.unk_token | |
| # Load data | |
| data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
| # Start trainner | |
| trainer = Trainer( | |
| model=model, tokenizer=tokenizer, args=training_args, **data_module | |
| ) | |
| if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
| trainer.train(resume_from_checkpoint=True) | |
| else: | |
| trainer.train() | |
| # Save model | |
| model.config.use_cache = True | |
| trainer.save_state() | |
| if trainer.is_deepspeed_enabled: | |
| trainer.save_model() | |
| else: | |
| trainer_save_model_safe(trainer) | |
| if __name__ == "__main__": | |
| train() | |