Spaces:
Runtime error
Runtime error
| import dataclasses | |
| import gc | |
| import glob | |
| import os | |
| from accelerate import init_empty_weights | |
| from accelerate.utils import set_module_tensor_to_device | |
| from huggingface_hub import snapshot_download | |
| import torch | |
| from torch import Tensor | |
| from torch.nn import functional as F | |
| import torch.nn as nn | |
| from tqdm import tqdm | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| AutoModel, | |
| AutoModelForSeq2SeqLM, | |
| ) | |
| class CompressionConfig: | |
| """Group-wise quantization.""" | |
| num_bits: int | |
| group_size: int | |
| group_dim: int | |
| symmetric: bool | |
| enabled: bool = True | |
| default_compression_config = CompressionConfig( | |
| num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True | |
| ) | |
| class CLinear(nn.Module): | |
| """Compressed Linear Layer.""" | |
| def __init__(self, weight=None, bias=None, device=None): | |
| super().__init__() | |
| if weight is None: | |
| self.weight = None | |
| elif isinstance(weight, Tensor): | |
| self.weight = compress(weight.data.to(device), default_compression_config) | |
| else: | |
| self.weight = weight | |
| self.bias = bias | |
| def forward(self, input: Tensor) -> Tensor: | |
| weight = decompress(self.weight, default_compression_config) | |
| if self.bias is None: | |
| return F.linear(input.to(weight.dtype), weight) | |
| return F.linear(input.to(weight.dtype), weight, self.bias.to(weight.dtype)) | |
| def compress_module(module, target_device): | |
| for attr_str in dir(module): | |
| target_attr = getattr(module, attr_str) | |
| if type(target_attr) == torch.nn.Linear: | |
| setattr( | |
| module, | |
| attr_str, | |
| CLinear(target_attr.weight, target_attr.bias, target_device), | |
| ) | |
| for name, child in module.named_children(): | |
| compress_module(child, target_device) | |
| def get_compressed_list(module, prefix=""): | |
| compressed_list = [] | |
| for attr_str in dir(module): | |
| target_attr = getattr(module, attr_str) | |
| if type(target_attr) == torch.nn.Linear: | |
| full_name = ( | |
| f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight" | |
| ) | |
| compressed_list.append(full_name) | |
| for name, child in module.named_children(): | |
| child_prefix = f"{prefix}.{name}" if prefix else name | |
| for each in get_compressed_list(child, child_prefix): | |
| compressed_list.append(each) | |
| return compressed_list | |
| def apply_compressed_weight(module, compressed_state_dict, target_device, prefix=""): | |
| for attr_str in dir(module): | |
| target_attr = getattr(module, attr_str) | |
| if type(target_attr) == torch.nn.Linear: | |
| full_name = ( | |
| f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight" | |
| ) | |
| setattr( | |
| module, | |
| attr_str, | |
| CLinear( | |
| compressed_state_dict[full_name], target_attr.bias, target_device | |
| ), | |
| ) | |
| for name, child in module.named_children(): | |
| child_prefix = f"{prefix}.{name}" if prefix else name | |
| apply_compressed_weight( | |
| child, compressed_state_dict, target_device, child_prefix | |
| ) | |
| def load_compress_model(model_path, device, torch_dtype, use_fast, revision="main"): | |
| # partially load model | |
| # `use_fast=True`` is not supported for some models. | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_path, use_fast=use_fast, revision=revision, trust_remote_code=True | |
| ) | |
| except TypeError: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_path, use_fast=~use_fast, revision=revision, trust_remote_code=True | |
| ) | |
| with init_empty_weights(): | |
| # `trust_remote_code` should be set as `True` for both AutoConfig and AutoModel | |
| config = AutoConfig.from_pretrained( | |
| model_path, | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch_dtype, | |
| trust_remote_code=True, | |
| revision=revision, | |
| ) | |
| # some models are loaded by AutoModel but not AutoModelForCausalLM, | |
| # such as chatglm, chatglm2 | |
| try: | |
| # google/flan-* models are based on an AutoModelForSeq2SeqLM. | |
| if "T5Config" in str(type(config)): | |
| model = AutoModelForSeq2SeqLM.from_config( | |
| config, trust_remote_code=True | |
| ) | |
| else: | |
| model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) | |
| except NameError: | |
| model = AutoModel.from_config(config, trust_remote_code=True) | |
| linear_weights = get_compressed_list(model) | |
| if os.path.exists(model_path): | |
| # `model_path` is a local folder | |
| base_pattern = os.path.join(model_path, "pytorch_model*.bin") | |
| else: | |
| # `model_path` is a cached Hugging Face repo | |
| # We don't necessarily need to download the model' repo again if there is a cache. | |
| # So check the default huggingface cache first. | |
| model_path_temp = os.path.join( | |
| os.path.expanduser("~"), | |
| ".cache/huggingface/hub", | |
| "models--" + model_path.replace("/", "--"), | |
| "snapshots/", | |
| ) | |
| downloaded = False | |
| if os.path.exists(model_path_temp): | |
| temp_last_dir = os.listdir(model_path_temp)[-1] | |
| model_path_temp = os.path.join(model_path_temp, temp_last_dir) | |
| base_pattern = os.path.join(model_path_temp, "pytorch_model*.bin") | |
| files = glob.glob(base_pattern) | |
| if len(files) > 0: | |
| downloaded = True | |
| if downloaded: | |
| model_path = model_path_temp | |
| else: | |
| model_path = snapshot_download(model_path, revision=revision) | |
| base_pattern = os.path.join(model_path, "pytorch_model*.bin") | |
| files = glob.glob(base_pattern) | |
| use_safetensors = False | |
| if len(files) == 0: | |
| base_pattern = os.path.join(model_path, "*.safetensors") | |
| files = glob.glob(base_pattern) | |
| use_safetensors = True | |
| if len(files) == 0: | |
| raise ValueError( | |
| f"Cannot find any model weight files. " | |
| f"Please check your (cached) weight path: {model_path}" | |
| ) | |
| compressed_state_dict = {} | |
| if use_safetensors: | |
| from safetensors.torch import load_file | |
| for filename in tqdm(files): | |
| if use_safetensors: | |
| tmp_state_dict = load_file(filename) | |
| else: | |
| tmp_state_dict = torch.load( | |
| filename, map_location=lambda storage, loc: storage | |
| ) | |
| for name in tmp_state_dict: | |
| if name in linear_weights: | |
| tensor = tmp_state_dict[name].to(device, dtype=torch_dtype) | |
| compressed_state_dict[name] = compress( | |
| tensor, default_compression_config | |
| ) | |
| else: | |
| compressed_state_dict[name] = tmp_state_dict[name].to( | |
| device, dtype=torch_dtype | |
| ) | |
| tmp_state_dict[name] = None | |
| tensor = None | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| if device == "xpu": | |
| torch.xpu.empty_cache() | |
| if device == "npu": | |
| torch.npu.empty_cache() | |
| for name in model.state_dict(): | |
| if name not in linear_weights: | |
| set_module_tensor_to_device( | |
| model, name, device, value=compressed_state_dict[name] | |
| ) | |
| apply_compressed_weight(model, compressed_state_dict, device) | |
| if torch_dtype == torch.float16: | |
| model.half() | |
| model.to(device) | |
| model.eval() | |
| return model, tokenizer | |
| def compress(tensor, config): | |
| """Simulate group-wise quantization.""" | |
| if not config.enabled: | |
| return tensor | |
| group_size, num_bits, group_dim, symmetric = ( | |
| config.group_size, | |
| config.num_bits, | |
| config.group_dim, | |
| config.symmetric, | |
| ) | |
| assert num_bits <= 8 | |
| original_shape = tensor.shape | |
| num_groups = (original_shape[group_dim] + group_size - 1) // group_size | |
| new_shape = ( | |
| original_shape[:group_dim] | |
| + (num_groups, group_size) | |
| + original_shape[group_dim + 1 :] | |
| ) | |
| # Pad | |
| pad_len = (group_size - original_shape[group_dim] % group_size) % group_size | |
| if pad_len != 0: | |
| pad_shape = ( | |
| original_shape[:group_dim] + (pad_len,) + original_shape[group_dim + 1 :] | |
| ) | |
| tensor = torch.cat( | |
| [tensor, torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)], | |
| dim=group_dim, | |
| ) | |
| data = tensor.view(new_shape) | |
| # Quantize | |
| if symmetric: | |
| B = 2 ** (num_bits - 1) - 1 | |
| scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0] | |
| data = data * scale | |
| data = data.clamp_(-B, B).round_().to(torch.int8) | |
| return data, scale, original_shape | |
| else: | |
| B = 2**num_bits - 1 | |
| mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0] | |
| mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0] | |
| scale = B / (mx - mn) | |
| data = data - mn | |
| data.mul_(scale) | |
| data = data.clamp_(0, B).round_().to(torch.uint8) | |
| return data, mn, scale, original_shape | |
| def decompress(packed_data, config): | |
| """Simulate group-wise dequantization.""" | |
| if not config.enabled: | |
| return packed_data | |
| group_size, num_bits, group_dim, symmetric = ( | |
| config.group_size, | |
| config.num_bits, | |
| config.group_dim, | |
| config.symmetric, | |
| ) | |
| # Dequantize | |
| if symmetric: | |
| data, scale, original_shape = packed_data | |
| data = data / scale | |
| else: | |
| data, mn, scale, original_shape = packed_data | |
| data = data / scale | |
| data.add_(mn) | |
| # Unpad | |
| pad_len = (group_size - original_shape[group_dim] % group_size) % group_size | |
| if pad_len: | |
| padded_original_shape = ( | |
| original_shape[:group_dim] | |
| + (original_shape[group_dim] + pad_len,) | |
| + original_shape[group_dim + 1 :] | |
| ) | |
| data = data.reshape(padded_original_shape) | |
| indices = [slice(0, x) for x in original_shape] | |
| return data[indices].contiguous() | |
| else: | |
| return data.view(original_shape) | |