Spaces:
Runtime error
Runtime error
xtts-and-whisper-update (#3)
Browse files- xtts and whisper jax (145f28e71d0018b8125e2a088a6e2fc7efff9ce9)
- remove unneded testfile (4d98613abf7d496dd3b12d2af377f8ba4ed587f4)
- add ffmpeg import (0e056f7dc33bdc6d3eab93d5ded7bb4ef630e102)
- app.py +133 -31
- requirements.txt +5 -2
app.py
CHANGED
|
@@ -11,8 +11,36 @@ import nltk # we'll use this to split into sentences
|
|
| 11 |
nltk.download('punkt')
|
| 12 |
import uuid
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
from TTS.api import TTS
|
| 15 |
-
tts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
title = "Voice chat with Mistral 7B Instruct"
|
| 18 |
|
|
@@ -44,11 +72,20 @@ from gradio_client import Client
|
|
| 44 |
from huggingface_hub import InferenceClient
|
| 45 |
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
text_client = InferenceClient(
|
| 49 |
"mistralai/Mistral-7B-Instruct-v0.1"
|
| 50 |
)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def format_prompt(message, history):
|
| 54 |
prompt = "<s>"
|
|
@@ -77,22 +114,35 @@ def generate(
|
|
| 77 |
|
| 78 |
formatted_prompt = format_prompt(prompt, history)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
return output
|
| 87 |
|
| 88 |
|
| 89 |
def transcribe(wav_path):
|
| 90 |
|
|
|
|
| 91 |
return whisper_client.predict(
|
| 92 |
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
|
| 93 |
"transcribe", # str in 'Task' Radio component
|
|
|
|
| 94 |
api_name="/predict"
|
| 95 |
-
)
|
| 96 |
|
| 97 |
|
| 98 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
|
@@ -106,9 +156,17 @@ def add_text(history, text):
|
|
| 106 |
|
| 107 |
def add_file(history, file):
|
| 108 |
history = [] if history is None else history
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
history = history + [(text, None)]
|
| 114 |
return history
|
|
@@ -126,29 +184,65 @@ def bot(history, system_prompt=""):
|
|
| 126 |
history[-1][1] = character
|
| 127 |
yield history
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
def generate_speech(history):
|
| 131 |
text_to_generate = history[-1][1]
|
| 132 |
text_to_generate = text_to_generate.replace("\n", " ").strip()
|
| 133 |
text_to_generate = nltk.sent_tokenize(text_to_generate)
|
| 134 |
-
|
| 135 |
-
filename = f"{uuid.uuid4()}.wav"
|
| 136 |
-
sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"]
|
| 137 |
-
silence = [0] * int(0.25 * sampling_rate)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
for sentence in text_to_generate:
|
| 141 |
-
try:
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
except RuntimeError as e :
|
| 154 |
if "device-side assert" in str(e):
|
|
@@ -163,6 +257,14 @@ def generate_speech(history):
|
|
| 163 |
else:
|
| 164 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 165 |
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
with gr.Blocks(title=title) as demo:
|
| 168 |
gr.Markdown(DESCRIPTION)
|
|
@@ -186,7 +288,7 @@ with gr.Blocks(title=title) as demo:
|
|
| 186 |
btn = gr.Audio(source="microphone", type="filepath", scale=4)
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
-
audio = gr.Audio(type="numpy", streaming=
|
| 190 |
|
| 191 |
clear_btn = gr.ClearButton([chatbot, audio])
|
| 192 |
|
|
@@ -210,11 +312,11 @@ with gr.Blocks(title=title) as demo:
|
|
| 210 |
gr.Markdown("""
|
| 211 |
This Space demonstrates how to speak to a chatbot, based solely on open-source models.
|
| 212 |
It relies on 3 models:
|
| 213 |
-
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-
|
| 214 |
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
|
| 215 |
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
|
| 216 |
|
| 217 |
Note:
|
| 218 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml""")
|
| 219 |
demo.queue()
|
| 220 |
-
demo.launch(debug=True)
|
|
|
|
| 11 |
nltk.download('punkt')
|
| 12 |
import uuid
|
| 13 |
|
| 14 |
+
import ffmpeg
|
| 15 |
+
import librosa
|
| 16 |
+
import torchaudio
|
| 17 |
from TTS.api import TTS
|
| 18 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
| 19 |
+
from TTS.tts.models.xtts import Xtts
|
| 20 |
+
from TTS.utils.generic_utils import get_user_data_dir
|
| 21 |
+
|
| 22 |
+
# This will trigger downloading model
|
| 23 |
+
print("Downloading if not downloaded Coqui XTTS V1")
|
| 24 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
|
| 25 |
+
del tts
|
| 26 |
+
print("XTTS downloaded")
|
| 27 |
+
|
| 28 |
+
print("Loading XTTS")
|
| 29 |
+
#Below will use model directly for inference
|
| 30 |
+
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v1")
|
| 31 |
+
config = XttsConfig()
|
| 32 |
+
config.load_json(os.path.join(model_path, "config.json"))
|
| 33 |
+
model = Xtts.init_from_config(config)
|
| 34 |
+
model.load_checkpoint(
|
| 35 |
+
config,
|
| 36 |
+
checkpoint_path=os.path.join(model_path, "model.pth"),
|
| 37 |
+
vocab_path=os.path.join(model_path, "vocab.json"),
|
| 38 |
+
eval=True,
|
| 39 |
+
use_deepspeed=True
|
| 40 |
+
)
|
| 41 |
+
model.cuda()
|
| 42 |
+
print("Done loading TTS")
|
| 43 |
+
|
| 44 |
|
| 45 |
title = "Voice chat with Mistral 7B Instruct"
|
| 46 |
|
|
|
|
| 72 |
from huggingface_hub import InferenceClient
|
| 73 |
|
| 74 |
|
| 75 |
+
# This client is down
|
| 76 |
+
#whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
|
| 77 |
+
# Replacement whisper client, it may be time limited
|
| 78 |
+
whisper_client = Client("https://sanchit-gandhi-whisper-jax.hf.space")
|
| 79 |
text_client = InferenceClient(
|
| 80 |
"mistralai/Mistral-7B-Instruct-v0.1"
|
| 81 |
)
|
| 82 |
|
| 83 |
+
###### COQUI TTS FUNCTIONS ######
|
| 84 |
+
def get_latents(speaker_wav):
|
| 85 |
+
# create as function as we can populate here with voice cleanup/filtering
|
| 86 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav)
|
| 87 |
+
return gpt_cond_latent, diffusion_conditioning, speaker_embedding
|
| 88 |
+
|
| 89 |
|
| 90 |
def format_prompt(message, history):
|
| 91 |
prompt = "<s>"
|
|
|
|
| 114 |
|
| 115 |
formatted_prompt = format_prompt(prompt, history)
|
| 116 |
|
| 117 |
+
try:
|
| 118 |
+
stream = text_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 119 |
+
output = ""
|
| 120 |
+
for response in stream:
|
| 121 |
+
output += response.token.text
|
| 122 |
+
yield output
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
if "Too Many Requests" in str(e):
|
| 126 |
+
print("ERROR: Too many requests on mistral client")
|
| 127 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
| 128 |
+
output = "Unfortuanately I am not able to process your request now !"
|
| 129 |
+
else:
|
| 130 |
+
print("Unhandled Exception: ", str(e))
|
| 131 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
| 132 |
+
output = "I do not know what happened but I could not understand you ."
|
| 133 |
+
|
| 134 |
return output
|
| 135 |
|
| 136 |
|
| 137 |
def transcribe(wav_path):
|
| 138 |
|
| 139 |
+
# get first element from whisper_jax and strip it to delete begin and end space
|
| 140 |
return whisper_client.predict(
|
| 141 |
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
|
| 142 |
"transcribe", # str in 'Task' Radio component
|
| 143 |
+
False, # return_timestamps=False for whisper-jax https://gist.github.com/sanchit-gandhi/781dd7003c5b201bfe16d28634c8d4cf#file-whisper_jax_endpoint-py
|
| 144 |
api_name="/predict"
|
| 145 |
+
)[0].strip()
|
| 146 |
|
| 147 |
|
| 148 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
|
|
|
| 156 |
|
| 157 |
def add_file(history, file):
|
| 158 |
history = [] if history is None else history
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
text = transcribe(
|
| 162 |
+
file
|
| 163 |
+
)
|
| 164 |
+
print("Transcribed text:",text)
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(str(e))
|
| 167 |
+
gr.Warning("There was an issue with transcription, please try writing for now")
|
| 168 |
+
# Apply a null text on error
|
| 169 |
+
text = "Transcription seems failed, please tell me a joke about chickens"
|
| 170 |
|
| 171 |
history = history + [(text, None)]
|
| 172 |
return history
|
|
|
|
| 184 |
history[-1][1] = character
|
| 185 |
yield history
|
| 186 |
|
| 187 |
+
|
| 188 |
+
def get_latents(speaker_wav):
|
| 189 |
+
# Generate speaker embedding and latents for TTS
|
| 190 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav)
|
| 191 |
+
return gpt_cond_latent, diffusion_conditioning, speaker_embedding
|
| 192 |
+
|
| 193 |
+
latent_map={}
|
| 194 |
+
latent_map["Female_Voice"] = get_latents("examples/female.wav")
|
| 195 |
+
|
| 196 |
+
def get_voice(prompt,language, latent_tuple,suffix="0"):
|
| 197 |
+
gpt_cond_latent,diffusion_conditioning, speaker_embedding = latent_tuple
|
| 198 |
+
# Direct version
|
| 199 |
+
t0 = time.time()
|
| 200 |
+
out = model.inference(
|
| 201 |
+
prompt,
|
| 202 |
+
language,
|
| 203 |
+
gpt_cond_latent,
|
| 204 |
+
speaker_embedding,
|
| 205 |
+
diffusion_conditioning
|
| 206 |
+
)
|
| 207 |
+
inference_time = time.time() - t0
|
| 208 |
+
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
| 209 |
+
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000
|
| 210 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 211 |
+
wav_filename=f"output_{suffix}.wav"
|
| 212 |
+
torchaudio.save(wav_filename, torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 213 |
+
return wav_filename
|
| 214 |
+
|
| 215 |
def generate_speech(history):
|
| 216 |
text_to_generate = history[-1][1]
|
| 217 |
text_to_generate = text_to_generate.replace("\n", " ").strip()
|
| 218 |
text_to_generate = nltk.sent_tokenize(text_to_generate)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
language = "en"
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
wav_list = []
|
| 223 |
+
for i,sentence in enumerate(text_to_generate):
|
| 224 |
+
# Sometimes prompt </s> coming on output remove it
|
| 225 |
+
sentence= sentence.replace("</s>","")
|
| 226 |
+
# A fast fix for last chacter, may produce weird sounds if it is with text
|
| 227 |
+
if sentence[-1] in ["!","?",".",","]:
|
| 228 |
+
#just add a space
|
| 229 |
+
sentence = sentence[:-1] + " " + sentence[-1]
|
| 230 |
+
|
| 231 |
+
print("Sentence:", sentence)
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
# generate speech using precomputed latents
|
| 235 |
+
# This is not streaming but it will be fast
|
| 236 |
|
| 237 |
+
# giving sentence suffix so we can merge all to single audio at end
|
| 238 |
+
# On mobile there is no autoplay support due to mobile security!
|
| 239 |
+
wav = get_voice(sentence,language, latent_map["Female_Voice"], suffix=i)
|
| 240 |
+
wav_list.append(wav)
|
| 241 |
+
|
| 242 |
+
yield wav
|
| 243 |
+
wait_time= librosa.get_duration(path=wav)
|
| 244 |
+
print("Sleeping till audio end")
|
| 245 |
+
time.sleep(wait_time)
|
| 246 |
|
| 247 |
except RuntimeError as e :
|
| 248 |
if "device-side assert" in str(e):
|
|
|
|
| 257 |
else:
|
| 258 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 259 |
raise e
|
| 260 |
+
#Spoken on autoplay everysencen now produce a concataned one at the one
|
| 261 |
+
#requires pip install ffmpeg-python
|
| 262 |
+
files_to_concat= [ffmpeg.input(w) for w in wav_list]
|
| 263 |
+
combined_file_name="combined.wav"
|
| 264 |
+
ffmpeg.concat(*files_to_concat,v=0, a=1).output(combined_file_name).run(overwrite_output=True)
|
| 265 |
+
|
| 266 |
+
return gr.Audio.update(value=combined_file_name, autoplay=False)
|
| 267 |
+
|
| 268 |
|
| 269 |
with gr.Blocks(title=title) as demo:
|
| 270 |
gr.Markdown(DESCRIPTION)
|
|
|
|
| 288 |
btn = gr.Audio(source="microphone", type="filepath", scale=4)
|
| 289 |
|
| 290 |
with gr.Row():
|
| 291 |
+
audio = gr.Audio(type="numpy", streaming=False, autoplay=True, label="Generated audio response", show_label=True)
|
| 292 |
|
| 293 |
clear_btn = gr.ClearButton([chatbot, audio])
|
| 294 |
|
|
|
|
| 312 |
gr.Markdown("""
|
| 313 |
This Space demonstrates how to speak to a chatbot, based solely on open-source models.
|
| 314 |
It relies on 3 models:
|
| 315 |
+
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-jax) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
|
| 316 |
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
|
| 317 |
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
|
| 318 |
|
| 319 |
Note:
|
| 320 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml""")
|
| 321 |
demo.queue()
|
| 322 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
|
@@ -53,8 +53,11 @@ encodec==0.1.*
|
|
| 53 |
# deps for XTTS
|
| 54 |
unidecode==1.3.*
|
| 55 |
langid
|
| 56 |
-
# Install
|
| 57 |
-
|
|
|
|
| 58 |
deepspeed==0.8.3
|
| 59 |
pydub
|
|
|
|
|
|
|
| 60 |
gradio_client
|
|
|
|
| 53 |
# deps for XTTS
|
| 54 |
unidecode==1.3.*
|
| 55 |
langid
|
| 56 |
+
# Install Coqui TTS
|
| 57 |
+
TTS==0.17.8
|
| 58 |
+
# Deepspeed for fast inference
|
| 59 |
deepspeed==0.8.3
|
| 60 |
pydub
|
| 61 |
+
librosa
|
| 62 |
+
ffmpeg-python
|
| 63 |
gradio_client
|