Spaces:
Running
Running
update
Browse files- app.py +97 -3
- hello.mp3 +0 -0
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,7 +1,101 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
import time
|
| 4 |
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
import numpy as np
|
| 7 |
+
import sphn
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from moshi.models import loaders
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def seed_all(seed):
|
| 14 |
+
torch.manual_seed(seed)
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
torch.cuda.manual_seed(seed)
|
| 17 |
+
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
|
| 18 |
+
random.seed(seed)
|
| 19 |
+
np.random.seed(seed)
|
| 20 |
+
torch.backends.cudnn.deterministic = True
|
| 21 |
+
torch.backends.cudnn.benchmark = False
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
seed_all(42424242)
|
| 25 |
+
|
| 26 |
+
device = "cuda" if torch.cuda.device_count() else "cpu"
|
| 27 |
+
num_codebooks = 32
|
| 28 |
+
|
| 29 |
+
print("loading mimi")
|
| 30 |
+
model_file = hf_hub_download(loaders.DEFAULT_REPO, "tokenizer-e351c8d8-checkpoint125.safetensors")
|
| 31 |
+
|
| 32 |
+
mimi = loaders.get_mimi(model_file, device, num_codebooks=num_codebooks)
|
| 33 |
+
mimi.eval()
|
| 34 |
+
print("mimi loaded")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def mimi_streaming_test(input_wave, max_duration_sec=10.0):
|
| 38 |
+
pcm_chunk_size = int(mimi.sample_rate / mimi.frame_rate)
|
| 39 |
+
# wget https://github.com/metavoiceio/metavoice-src/raw/main/assets/bria.mp3
|
| 40 |
+
sample_pcm, sample_sr = sphn.read(input_wave) # ("bria.mp3")
|
| 41 |
+
sample_rate = mimi.sample_rate
|
| 42 |
+
print("loaded pcm", sample_pcm.shape, sample_sr)
|
| 43 |
+
sample_pcm = sphn.resample(
|
| 44 |
+
sample_pcm, src_sample_rate=sample_sr, dst_sample_rate=sample_rate
|
| 45 |
+
)
|
| 46 |
+
sample_pcm = torch.tensor(sample_pcm, device=device)
|
| 47 |
+
max_duration_len = int(sample_rate * max_duration_sec)
|
| 48 |
+
if sample_pcm.shape[-1] > max_duration_len:
|
| 49 |
+
sample_pcm = sample_pcm[..., :max_duration_len]
|
| 50 |
+
print("resampled pcm", sample_pcm.shape, sample_sr)
|
| 51 |
+
sample_pcm = sample_pcm[None].to(device=device)
|
| 52 |
+
|
| 53 |
+
print("streaming encoding...")
|
| 54 |
+
start_time = time.time()
|
| 55 |
+
all_codes = []
|
| 56 |
+
|
| 57 |
+
def run_loop():
|
| 58 |
+
for start_idx in range(0, sample_pcm.shape[-1], pcm_chunk_size):
|
| 59 |
+
end_idx = min(sample_pcm.shape[-1], start_idx + pcm_chunk_size)
|
| 60 |
+
chunk = sample_pcm[..., start_idx:end_idx]
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
codes = mimi.encode(chunk)
|
| 63 |
+
if codes.shape[-1]:
|
| 64 |
+
print(start_idx, codes.shape, end="\r")
|
| 65 |
+
all_codes.append(codes)
|
| 66 |
+
|
| 67 |
+
run_loop()
|
| 68 |
+
all_codes_th = torch.cat(all_codes, dim=-1)
|
| 69 |
+
print(f"codes {all_codes_th.shape} generated in {time.time() - start_time:.2f}s")
|
| 70 |
+
|
| 71 |
+
all_codes_list = [all_codes_th[:, :1, :],
|
| 72 |
+
all_codes_th[:, :2, :],
|
| 73 |
+
all_codes_th[:, :4, :],
|
| 74 |
+
# all_codes_th[:, :8, :],
|
| 75 |
+
# all_codes_th[:, :16, :],
|
| 76 |
+
all_codes_th[:, :32, :]]
|
| 77 |
+
pcm_list = []
|
| 78 |
+
for i, all_codes_th in enumerate(all_codes_list):
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
print(f"decoding {i+1} codebooks, {all_codes_th.shape}")
|
| 81 |
+
pcm = mimi.decode(all_codes_th)
|
| 82 |
+
pcm_list.append((sample_rate, pcm[0, 0].cpu().numpy()))
|
| 83 |
+
# sphn.write_wav("roundtrip_out.wav", pcm[0, 0].cpu().numpy(), sample_rate)
|
| 84 |
+
return pcm_list
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
demo = gr.Interface(
|
| 88 |
+
fn=mimi_streaming_test,
|
| 89 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
| 90 |
+
outputs=[gr.Audio(type="numpy", label="With 1 codebook"),
|
| 91 |
+
gr.Audio(type="numpy", label="With 2 codebooks"),
|
| 92 |
+
gr.Audio(type="numpy", label="With 4 codebooks"),
|
| 93 |
+
# gr.Audio(type="numpy", label="With 8 codebooks"),
|
| 94 |
+
# gr.Audio(type="numpy", label="With 16 codebooks"),
|
| 95 |
+
gr.Audio(type="numpy", label="With 32 codebooks")],
|
| 96 |
+
examples= [["hello.mp3"]],
|
| 97 |
+
title="Mimi tokenizer playground",
|
| 98 |
+
description="Explore the quality of compression when using various number of code books in the Mimi model."
|
| 99 |
+
)
|
| 100 |
|
|
|
|
| 101 |
demo.launch()
|
hello.mp3
ADDED
|
Binary file (5.76 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
moshi
|