Spaces:
Runtime error
Runtime error
Commit
·
b22328e
1
Parent(s):
678c4c4
updated
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ adapter_path = "thinkingnew/llama_invs_adapter"
|
|
| 13 |
# Check if GPU is available
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
-
# Load base model with device_map="auto" to handle GPUs automatically
|
| 17 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
base_model_path, torch_dtype=torch.float16, device_map="auto"
|
| 19 |
)
|
|
@@ -21,46 +21,23 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
| 21 |
# Load adapter and ensure it is on the correct device
|
| 22 |
model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
|
| 23 |
|
| 24 |
-
# Load tokenizer
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 26 |
-
tokenizer.pad_token = tokenizer.eos_token # Avoids padding issues
|
| 27 |
|
| 28 |
# Define request model for validation
|
| 29 |
class GenerateRequest(BaseModel):
|
| 30 |
prompt: str
|
| 31 |
|
| 32 |
-
# **Use model.generate() instead of pipeline()
|
| 33 |
def generate_text_from_model(prompt: str):
|
| 34 |
try:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
return_tensors="pt",
|
| 38 |
-
padding=True,
|
| 39 |
-
truncation=True
|
| 40 |
-
)
|
| 41 |
-
input_ids = input_data.input_ids.to(device)
|
| 42 |
-
attention_mask = input_data.attention_mask.to(device)
|
| 43 |
-
|
| 44 |
-
# Generate output
|
| 45 |
-
output_ids = model.generate(
|
| 46 |
-
input_ids,
|
| 47 |
-
max_length=512,
|
| 48 |
-
pad_token_id=tokenizer.eos_token_id, # Explicitly setting pad_token_id
|
| 49 |
-
attention_mask=attention_mask
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 53 |
-
|
| 54 |
-
# Extract only the assistant's response
|
| 55 |
-
response_text = generated_text.split("<|assistant|>\n")[-1].strip()
|
| 56 |
-
return response_text
|
| 57 |
-
except torch.cuda.OutOfMemoryError:
|
| 58 |
-
torch.cuda.empty_cache()
|
| 59 |
-
raise HTTPException(status_code=500, detail="CUDA Out of Memory. Try using a smaller model or lowering max_length.")
|
| 60 |
except Exception as e:
|
| 61 |
raise HTTPException(status_code=500, detail=str(e))
|
| 62 |
|
| 63 |
-
|
| 64 |
# Root endpoint for testing
|
| 65 |
@app.get("/")
|
| 66 |
async def root():
|
|
|
|
| 13 |
# Check if GPU is available
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
+
# Load base model with `device_map="auto"` to handle GPUs automatically
|
| 17 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
base_model_path, torch_dtype=torch.float16, device_map="auto"
|
| 19 |
)
|
|
|
|
| 21 |
# Load adapter and ensure it is on the correct device
|
| 22 |
model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
|
| 23 |
|
| 24 |
+
# Load tokenizer
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
|
|
|
| 26 |
|
| 27 |
# Define request model for validation
|
| 28 |
class GenerateRequest(BaseModel):
|
| 29 |
prompt: str
|
| 30 |
|
| 31 |
+
# **Use `model.generate()` instead of `pipeline()`**
|
| 32 |
def generate_text_from_model(prompt: str):
|
| 33 |
try:
|
| 34 |
+
input_ids = tokenizer(f"<s>[INST] {prompt} [/INST]", return_tensors="pt").input_ids.to(device)
|
| 35 |
+
output_ids = model.generate(input_ids, max_length=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 37 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
except Exception as e:
|
| 39 |
raise HTTPException(status_code=500, detail=str(e))
|
| 40 |
|
|
|
|
| 41 |
# Root endpoint for testing
|
| 42 |
@app.get("/")
|
| 43 |
async def root():
|