Spaces:
Runtime error
Runtime error
File size: 1,210 Bytes
715110f 4ec308a 715110f 8c6d7e5 715110f 4ec308a 715110f 4ec308a 715110f 4ec308a 715110f 4ec308a 715110f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel
import torch
app = FastAPI()
# Define paths
base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
adapter_path = "thinkingnew/llama_invs_adapter"
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_path, torch_dtype=torch.float16 if device == "cuda" else torch.float32, device_map="auto"
).to(device)
# Load adapter
model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Load pipeline once (for better performance)
text_pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
max_length=512
)
# Root endpoint for testing
@app.get("/")
async def root():
return {"message": "Model is running! Use /generate/ for text generation."}
# Text generation endpoint
@app.post("/generate/")
async def generate_text(prompt: str):
result = text_pipe(f"<s>[INST] {prompt} [/INST]")
return {"response": result[0]['generated_text']}
|