Spaces:
Configuration error
Configuration error
| import contextlib | |
| import os | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from basicsr.utils.download_util import load_file_from_url | |
| from tqdm import tqdm | |
| from modules import modelloader, devices, script_callbacks, shared | |
| from modules.shared import cmd_opts, opts, state | |
| from swinir_model_arch import SwinIR as net | |
| from swinir_model_arch_v2 import Swin2SR as net2 | |
| from modules.upscaler import Upscaler, UpscalerData | |
| device_swinir = devices.get_device_for('swinir') | |
| class UpscalerSwinIR(Upscaler): | |
| def __init__(self, dirname): | |
| self.name = "SwinIR" | |
| self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ | |
| "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ | |
| "-L_x4_GAN.pth " | |
| self.model_name = "SwinIR 4x" | |
| self.user_path = dirname | |
| super().__init__() | |
| scalers = [] | |
| model_files = self.find_models(ext_filter=[".pt", ".pth"]) | |
| for model in model_files: | |
| if "http" in model: | |
| name = self.model_name | |
| else: | |
| name = modelloader.friendly_name(model) | |
| model_data = UpscalerData(name, model, self) | |
| scalers.append(model_data) | |
| self.scalers = scalers | |
| def do_upscale(self, img, model_file): | |
| model = self.load_model(model_file) | |
| if model is None: | |
| return img | |
| model = model.to(device_swinir, dtype=devices.dtype) | |
| img = upscale(img, model) | |
| try: | |
| torch.cuda.empty_cache() | |
| except: | |
| pass | |
| return img | |
| def load_model(self, path, scale=4): | |
| if "http" in path: | |
| dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") | |
| filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) | |
| else: | |
| filename = path | |
| if filename is None or not os.path.exists(filename): | |
| return None | |
| if filename.endswith(".v2.pth"): | |
| model = net2( | |
| upscale=scale, | |
| in_chans=3, | |
| img_size=64, | |
| window_size=8, | |
| img_range=1.0, | |
| depths=[6, 6, 6, 6, 6, 6], | |
| embed_dim=180, | |
| num_heads=[6, 6, 6, 6, 6, 6], | |
| mlp_ratio=2, | |
| upsampler="nearest+conv", | |
| resi_connection="1conv", | |
| ) | |
| params = None | |
| else: | |
| model = net( | |
| upscale=scale, | |
| in_chans=3, | |
| img_size=64, | |
| window_size=8, | |
| img_range=1.0, | |
| depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], | |
| embed_dim=240, | |
| num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], | |
| mlp_ratio=2, | |
| upsampler="nearest+conv", | |
| resi_connection="3conv", | |
| ) | |
| params = "params_ema" | |
| pretrained_model = torch.load(filename) | |
| if params is not None: | |
| model.load_state_dict(pretrained_model[params], strict=True) | |
| else: | |
| model.load_state_dict(pretrained_model, strict=True) | |
| return model | |
| def upscale( | |
| img, | |
| model, | |
| tile=None, | |
| tile_overlap=None, | |
| window_size=8, | |
| scale=4, | |
| ): | |
| tile = tile or opts.SWIN_tile | |
| tile_overlap = tile_overlap or opts.SWIN_tile_overlap | |
| img = np.array(img) | |
| img = img[:, :, ::-1] | |
| img = np.moveaxis(img, 2, 0) / 255 | |
| img = torch.from_numpy(img).float() | |
| img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype) | |
| with torch.no_grad(), devices.autocast(): | |
| _, _, h_old, w_old = img.size() | |
| h_pad = (h_old // window_size + 1) * window_size - h_old | |
| w_pad = (w_old // window_size + 1) * window_size - w_old | |
| img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] | |
| img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] | |
| output = inference(img, model, tile, tile_overlap, window_size, scale) | |
| output = output[..., : h_old * scale, : w_old * scale] | |
| output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
| if output.ndim == 3: | |
| output = np.transpose( | |
| output[[2, 1, 0], :, :], (1, 2, 0) | |
| ) # CHW-RGB to HCW-BGR | |
| output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
| return Image.fromarray(output, "RGB") | |
| def inference(img, model, tile, tile_overlap, window_size, scale): | |
| # test the image tile by tile | |
| b, c, h, w = img.size() | |
| tile = min(tile, h, w) | |
| assert tile % window_size == 0, "tile size should be a multiple of window_size" | |
| sf = scale | |
| stride = tile - tile_overlap | |
| h_idx_list = list(range(0, h - tile, stride)) + [h - tile] | |
| w_idx_list = list(range(0, w - tile, stride)) + [w - tile] | |
| E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img) | |
| W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir) | |
| with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: | |
| for h_idx in h_idx_list: | |
| if state.interrupted or state.skipped: | |
| break | |
| for w_idx in w_idx_list: | |
| if state.interrupted or state.skipped: | |
| break | |
| in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] | |
| out_patch = model(in_patch) | |
| out_patch_mask = torch.ones_like(out_patch) | |
| E[ | |
| ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
| ].add_(out_patch) | |
| W[ | |
| ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
| ].add_(out_patch_mask) | |
| pbar.update(1) | |
| output = E.div_(W) | |
| return output | |
| def on_ui_settings(): | |
| import gradio as gr | |
| shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) | |
| shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) | |
| script_callbacks.on_ui_settings(on_ui_settings) | |