Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 3 |
+
|
| 4 |
+
# Load your fine-tuned FLAN-T5 model and tokenizer
|
| 5 |
+
@st.cache_resource
|
| 6 |
+
def load_model():
|
| 7 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
| 8 |
+
model = T5ForConditionalGeneration.from_pretrained("thaboe01/t5-spelling-correctorv2")
|
| 9 |
+
return tokenizer, model
|
| 10 |
+
|
| 11 |
+
# Load model (only once)
|
| 12 |
+
tokenizer, model = load_model()
|
| 13 |
+
|
| 14 |
+
MAX_PHRASE_LENGTH = 5
|
| 15 |
+
PREFIX = "Please correct the following sentence: "
|
| 16 |
+
|
| 17 |
+
# Function to correct text
|
| 18 |
+
def correct_text(text):
|
| 19 |
+
words = text.split()
|
| 20 |
+
corrected_phrases = []
|
| 21 |
+
current_chunk = []
|
| 22 |
+
|
| 23 |
+
for word in words:
|
| 24 |
+
current_chunk.append(word)
|
| 25 |
+
# Check if adding the next word would exceed max length (including prefix)
|
| 26 |
+
if len(current_chunk) + 1 > MAX_PHRASE_LENGTH:
|
| 27 |
+
input_text = PREFIX + " ".join(current_chunk)
|
| 28 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
| 29 |
+
outputs = model.generate(input_ids)
|
| 30 |
+
corrected_phrase = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(PREFIX):] # Remove the prefix
|
| 31 |
+
corrected_phrases.append(corrected_phrase)
|
| 32 |
+
current_chunk = [] # Reset the chunk
|
| 33 |
+
|
| 34 |
+
# Handle the last chunk
|
| 35 |
+
if current_chunk:
|
| 36 |
+
input_text = PREFIX + " ".join(current_chunk)
|
| 37 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
| 38 |
+
outputs = model.generate(input_ids)
|
| 39 |
+
corrected_phrase = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(PREFIX):]
|
| 40 |
+
corrected_phrases.append(corrected_phrase)
|
| 41 |
+
|
| 42 |
+
return " ".join(corrected_phrases) # Join the corrected chunks
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Streamlit App
|
| 46 |
+
st.title("Shona Text Editor with Real-Time Spelling Correction")
|
| 47 |
+
text_input = st.text_area("Start typing here...", height=250)
|
| 48 |
+
|
| 49 |
+
if text_input:
|
| 50 |
+
corrected_text = correct_text(text_input)
|
| 51 |
+
st.text_area("Corrected Text", value=corrected_text, height=250, disabled=True)
|